

1 **Evolutionary ecology of the interactions between trophobiotic**
2 **ants and parasitoids of phloem-feeding hemipterans**

3
4 Ángel Plata*, Maite Fernández de Bobadilla and Alejandro Tena

5
6 *Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones*
7 *Agrarias (IVIA). Carretera CV-315 km 10.7, 46113 Moncada, Valencia, Spain*

8
9
10 * Author for correspondence (E-mail: anplasan91@gmail.com; Tel.: +34656183180).

11
12 ABSTRACT

13 Ants and phloem-feeding hemipterans have established one of the most widespread and
14 best-known mutualisms on Earth. In this mutualism, known as trophobiosis, ants feed
15 on honeydew excreted by phloem-feeding hemipterans and, in exchange, protect
16 hemipterans from their antagonists. Parasitoid wasps are among the main groups of
17 antagonists of phloem-feeding hemipterans. Like trophobiosis, the interaction between
18 trophobiotic ants and parasitoids of phloem-feeding hemipterans has evolved over
19 millions of years and is widely distributed both geographically and phylogenetically.

20 Ants protect phloem-feeding hemipterans from their parasitoids in many different ways,
21 with outcomes for parasitoids that vary from altered reproduction or development to
22 death. Consequently, parasitoids have evolved a series of behavioural, chemical, and
23 morphological adaptations that reduce or limit the impact of trophobiotic ants. Our
24 review shows that research on these interactions is asymmetric and strongly biased
25 towards certain taxa and ecosystems, mostly aphids that feed on temperate crops. It will

26 be necessary to broaden the range of taxa and ecosystems studied to evaluate how these
27 interactions have shaped the evolution of phloem-feeding hemipterans, their parasitoids,
28 and trophobiotic ants. While, in general, the presence of trophobiotic ants reduces the
29 top-down regulation of phloem-feeding hemipterans by parasitoids, recent findings
30 suggest that the mechanisms that explain this reduction are more complex than
31 expected. By reviewing these interactions, the limitations of past research, and the
32 advantages of current techniques, we provide perspectives to understand: (i) the
33 mechanisms that ants use to protect hemipterans from parasitoids; (ii) the strategies
34 evolved by parasitoids to counteract these ants; and (iii) the multiple factors that
35 modulate the effects of trophobiotic ants on parasitoids of hemipterans. We suggest that
36 a better understanding of these interactions will improve the management of phloem-
37 feeding hemipterans, which constitute one of the most damaging groups of pests to
38 global agriculture.

39
40 *Key words:* Formicidae, mutualism, multitrophic interaction, parasitism, Hemiptera,
41 honeydew, Hymenoptera, hyperparasitism, parasite, pests.

42
43 CONTENTS
44 I. Introduction
45 II. Evolutionary history of the interactions between trophobiotic ants and parasitoids of
46 phloem-feeding hemipterans
47 (1) Origins of hemipteran-parasitoid interactions
48 (2) The involvement of ants in hemipteran-parasitoid interactions
49 III. How do trophobiotic ants protect phloem-feeding hemipterans from their
50 parasitoids?

51 (1) Direct mechanisms
52 (a) Ants attack adult parasitoids
53 (b) Ants attack immature parasitoids
54 (2) Indirect mechanisms
55 IV. Counterstrategies of parasitoids
56 (1) Behavioural strategies
57 (2) Chemical strategies
58 (3) Morphological adaptations
59 V. Factors modulating the interactions between trophobiotic ants and parasitoids of
60 phloem-feeding hemipterans
61 (1) Hemipteran host
62 (2) Trophobiotic ant
63 (3) Parasitoid
64 (4) Host plant
65 (5) Other factors
66 VI. Conclusions
67 VII. Acknowledgements
68 VIII. References
69 IX. Supporting information
70
71 **I. INTRODUCTION**
72 Hemipterans constitute one of the most diverse, ubiquitous, and abundant groups of
73 herbivorous insects worldwide (Vea & Grimaldi, 2016; Szwedo, 2016). Among this
74 diverse group of insects, hemipterans that feed on plant phloem cause severe damage to
75 agriculture and forestry (Gullan & Martin, 2009; Emdem & Harrington, 2017; Kondo &

76 Watson, 2022). These include major global pests, such as aphids, whiteflies, scale
77 insects, and mealybugs. These hemipterans must excrete excess sugar from their phloem
78 diet, which is sugar-rich but protein-limited (Douglas, 2009; Urbaneja-Bernat *et al.*,
79 2024). This sugar-rich excretion is called honeydew. A diverse plethora of organisms
80 feed or develop on honeydew (Way, 1963; Wackers, Van Rijn & Heimpel, 2008; Dhami
81 *et al.*, 2013; Tena *et al.*, 2016), and it therefore partially drives both the interactions of
82 hemipterans with other organisms and variation in life histories of phloem-feeding
83 hemipterans through their interactions with antagonists and mutualists (Styrsky &
84 Eubanks, 2007; Tena *et al.*, 2016; Pringle, 2021; Fernández de Bobadilla *et al.*, 2024).

85 Phloem-feeding hemipterans are attacked by different natural enemies including
86 microorganisms, generalist and oligophagous predators, and oligophagous parasitoids
87 (Hirose, 2006; Daane *et al.*, 2012; Diehl *et al.*, 2013). Among these, parasitoid wasps
88 belonging to the order Hymenoptera are likely the most diverse and widespread group
89 of antagonists of phloem-feeding hemipterans (Labandeira & Li, 2021; Cruaud *et al.*,
90 2024). These wasps lay eggs inside or on hemipterans and immatures live as parasites
91 that eventually kill their hosts. Parasitoid wasps are effective top-down regulators of
92 phloem-feeding hemipterans and, thereby reduce herbivore pressure (Godfray & Müller,
93 1998; Hirose, 2006; Mills, 2009; Boivin, Hance & Brodeur, 2012; Kapranas & Tena,
94 2015). However, defensive mechanisms of hemipterans, including chemical,
95 physiological, morphological, and behavioural, can limit top-down suppression caused
96 by their parasitoids (Blumberg & Van Driesche, 2001; Villagra, Ramírez & Niemeyer,
97 2002; Desneux *et al.*, 2009; Le Ralec *et al.*, 2010; Vorburger, 2014; Tena *et al.*, 2018a).
98 Among these defensive mechanisms, the mutualistic relationships that many phloem-
99 feeding hemipteran species establish with ants is an important constraint for parasitoids
100 (Hölldobler & Wilson, 1990; Völkl, 1997; Delabie, 2001).

101 Ants are among the most abundant arthropods in terrestrial environments and a
102 prime example of interspecific dominance (Ward, 2014; Parker & Kronauer, 2021).
103 Several groups of ants have specific adaptations to feed on honeydew excreted by
104 phloem-feeding hemipterans. These adaptations include the ability to collect, transport,
105 and share liquid food with nestmates (Ward, 2014; Nelson & Mooney, 2022). In
106 exchange, these honeydew-feeding ant species attend phloem-feeding hemipterans and
107 defend them from their natural enemies, including their parasitoids (Fig. 1) (Way, 1963;
108 Hölldobler & Wilson, 1990; Delabie, 2001). This aggressive behaviour of ants
109 defending hemipterans is accompanied by specific adaptations of many hemipteran
110 species that facilitate ant attendance, resulting in one of the most widespread and best-
111 known mutualisms on Earth (Ness, Mooney & Lach, 2010; Nelson & Mooney, 2022).
112 This ‘food-for-protection’ mutualism, known as trophobiosis, is widely spread
113 phylogenetically and geographically, and can modulate the arthropod community
114 structure of many ecosystems, including the abundance and diversity of hemipteran
115 parasitoids (Styrsky & Eubanks, 2007; Zhang, Zhang & Ma, 2012; Clark *et al.*, 2019).
116 Despite this widespread mutualism, parasitoids have also evolved a wide range of
117 adaptations that allow them to exploit their hemipteran hosts even when trophobiotic
118 ants protect them (Völkl, 1992, 1997; Kaneko, 2002; Daane *et al.*, 2007; Sime & Daane,
119 2014).
120 The interactions between trophobiotic ants and parasitoids of phloem-feeding
121 hemipterans, along with the biotic and abiotic factors that modulate these interactions,
122 may contribute to explaining the evolutionary success of phloem-feeding hemipterans in
123 many ecosystems. Ant–hemipteran interactions have been extensively studied and
124 reviewed (e.g. Styrsky & Eubanks, 2007; Nelson & Mooney, 2022). However, few
125 works have synthesized the interactions between trophobiotic ants and the parasitoids of

126 hemipterans, despite the high impact of parasitoids on hemipterans and the large
127 number of case studies. Prior reviews on these interactions are restricted to a single
128 family of hemipterans: the aphids (Stary, 1966; Völkl, 1997). Moreover, recent research
129 with novel techniques and a higher diversity of ants, parasitoids, and hemipterans has
130 revealed that the mechanisms that explain the effects of trophobiotic ants in the
131 regulation of phloem-feeding insects *via* their parasitoids are more complex than
132 previously thought.

133 Herein, we first synthesize the evolutionary history of the interactions between
134 trophobiotic ants and parasitoids of phloem-feeding hemipterans. We then explain how
135 ants protect phloem-feeding hemipterans from parasitoids; and how some parasitoid
136 species have adapted to exploit ant-attended hemipterans. The outcome of these
137 interactions and the main factors that modulate them are also discussed. We use these
138 findings to propose future research directions on these interactions, and to discuss
139 different approaches to enhance the control of phloem-feeding hemipteran pests.

140

141 **II. EVOLUTIONARY HISTORY OF THE INTERACTIONS BETWEEN**
142 **TROPHOBIOTIC ANTS AND PARASITOIDS OF PHLOEM-FEEDING**
143 **HEMIPTERANS**

144 **(1) Origin of hemipteran-parasitoid interactions**

145 Hemipterans appeared 330–310 million years ago (Ma) from an herbivorous
146 ancestor belonging to the order Paraneoptera, which already had specialized mouthparts
147 for feeding on liquid diets (Nel *et al.*, 2013; Yoshizawa & Lienhard, 2016). Hemipterans
148 then evolved more specialized mouthparts, known as stylets, that allowed them to reach
149 phloem vessels of plants (Szwedo, 2016). During this evolutionary process, the order
150 Hemiptera diversified into three suborders. The suborders Sternorrhyncha and

151 Auchenorrhyncha remained specialized in feeding on phloem, while the suborder
152 Heteroptera evolved predatory habits (Nelson & Mooney, 2022). Most extant clades of
153 phloem-feeding hemipterans, including those that are major agricultural pests, are found
154 in the suborder Sternorrhyncha, which appeared around 300 Ma (Drohojowska *et al.*,
155 2020). The infraorder Aphidomorpha originated in the mid-Permian (around 280 Ma),
156 Aleyrodomorpha in the Middle Jurassic (around 160 Ma), and Coccidomorpha in the
157 early Cretaceous (around 140 Ma) (Drohojowska *et al.*, 2020). Sternorrhyncha radiated
158 rapidly during the Cretaceous, coinciding with the origin of angiosperms (Vea &
159 Grimaldi, 2016; Hardy, 2018). Some abundant and diverse extant Sternorrhyncha
160 families such as Pseudococcidae originated before the Mid-Cretaceous (150 Ma), while
161 others, such as Coccidae and Aphididae, appeared in the Late Cretaceous (100–66 Ma).

162 The spreading and diversification of phloem-feeding hemipterans was followed
163 by an increase in abundance and diversity of higher trophic levels. Different clades of
164 generalist predators and parasitoids gradually evolved into specialists (Labandeira & Li,
165 2021). Among these, hymenopteran parasitoid wasps reached notable diversity and
166 abundance (Craaud *et al.*, 2024), with a radiation that began around 266–195 Ma
167 (Peters *et al.*, 2017). The oldest records of parasitoids of phloem-feeding hemipterans
168 can be dated to the Triassic (206 Ma) for representatives of the superfamilies
169 Ichneumonoidea and Cynipoidea (Blaimer *et al.*, 2023; Labandeira & Li, 2021). In the
170 Early Cretaceous (145–100 Ma), there was an extensive radiation within the
171 Hymenoptera, which resulted in the origin of several clades of parasitoids exploiting
172 phloem-feeding hemipterans, including the superfamilies Ceraphronoidea (family
173 Megaspilidae) and Chalcidoidea (families Aphelinidae, Calesidae, Idioporidae,
174 Trichogrammatidae, and Eulophidae) (Craaud *et al.*, 2024; Blaimer *et al.*, 2023;
175 Labandeira & Li, 2021; Peters *et al.*, 2017). Many groups of parasitoids of phloem-

176 feeding hemipterans originated in the Late Cretaceous (100–66 Ma), including the
177 family Encyrtidae (Chalcidoidea) and the superfamilies Apoidea (family Crabronidae)
178 and Neostrepsiptera (family Halictophagidae). Parasitoid clades attacking phloem-
179 feeding hemipterans, including most Chalcidoidea families, underwent notable
180 diversification in Palaeocene (66–56 Ma) and Eocene (56–33.9 Ma) (Craaud *et al.*,
181 2024).

182

183 **(2) The involvement of ants in hemipteran–parasitoid interactions**

184 Ants originated approximately 160 Ma, primarily exploiting resources from the
185 ground (Moreau *et al.*, 2006; Vizueta *et al.*, 2025). Ants began foraging in plant
186 canopies during the Early Cretaceous (about 120 Ma), and different arboreal-foraging
187 traits emerged following angiosperm diversification in the Late Cretaceous (100–66
188 Ma) (Nelsen, Ree & Moreau, 2018; Nelson & Mooney, 2022). This process involved a
189 shift from exclusively predatory behaviour to incorporating plant-based food sources
190 into their diet. Several extant canopy-foraging ant species, even some that feed on
191 honeydew, still prey on hemipterans to meet their protein requirements (Sakata, 1994;
192 Offenberg, 2001). While foraging in plant canopies, ants also began to consume sugary
193 liquid resources, including plant nectar and honeydew excreted by phloem-feeding
194 hemipterans. As a result, several clades of ants developed trophallaxis, which is the
195 collection and sharing of liquid resources with nestmates that do not forage, including
196 larvae and queens. Trophallaxis allowed ant colonies to become ecologically dominant
197 (Nelsen *et al.*, 2018; Meurville & LeBoeuf, 2021). Ant–hemipteran trophobiotic
198 associations occurred as early as the Eocene (56 Ma) (Nelsen *et al.*, 2018). Over the last
199 50 Ma, different traits evolved in ants in response to ant–hemipteran interactions, such

200 as the symbiotic gut bacteria that facilitated further shifts from predatory to honeydew-
201 feeding habits (Davidson *et al.*, 2003; Nelson & Mooney 2022).

202 While honeydew-feeding ants took advantage of a high-energy food resource,
203 phloem-feeding hemipterans also benefitted from the exploitation of honeydew by ants.
204 First, the ants reduced predation on the attended honeydew-producing hemipterans. In
205 addition, ants evolved behaviours that favoured honeydew-producing hemipterans,
206 including transportation of hemipterans (Ho & Khoo, 1997), cleaning and sanitizing
207 (Queiroz & Oliveira, 2001; Nielsen, Agrawal & Hajek, 2010), and protection from
208 natural enemies (Delabie, 2001; Styrsky & Eubanks, 2007). These ‘food-for-protection’
209 interactions, called trophobiosis, extended across multiple clades of ants and phloem-
210 feeding hemipterans to become one of the most widespread mutualisms (Pringle, 2021;
211 Nelson & Mooney, 2022). This represents an important defensive advantage for
212 hemipterans attended by ants, which were likely attacked by abundant and diverse
213 parasitoid wasps when ant–hemipteran trophobiotic associations emerged (Blaimer *et*
214 *al.*, 2023; Cruaud *et al.*, 2024).

215 Ant attendance, however, also has direct and indirect costs for phloem-feeding
216 hemipterans (Stadler & Dixon, 1998; Yao, Shibao & Akimoto, 2000; Katayama &
217 Suzuki, 2002). This trade-off may explain why many lineages of phloem-feeding
218 hemipterans are not tended by ants, and why most ant–hemipteran mutualisms are
219 facultative (Stadler & Dixon, 1999, 2005). The presence of parasitoids can be critical
220 for the benefits to outweigh the costs for hemipterans in these interactions. For example,
221 an increased concentration of melezitose in the excreted honeydew carries a fitness cost
222 for hemipterans, but this compound attracts ants that can provide services including
223 reduced mortality from parasitoids (Itioka & Inoue, 1996; Fischer & Shingleton,
224 2001; Zhou *et al.*, 2015c). Indeed, the rapid expansion and diversification of ant–

225 hemipteran trophobiotic interactions may have been an important mechanism that
226 promoted adaptive radiation in the parasitoids of hemipterans in the Eocene. Radiation
227 of parasitoids of phloem-feeding hemipterans over the last 100 Ma has been linked to
228 radiations of both angiosperms and hemipterans (Craaud *et al.*, 2024; Jouault *et al.*,
229 2025). It is likely, however, that ant attendance also became an important mechanism
230 promoting the radiation of some groups of hemipterans around 50 Ma due to the
231 negative impacts of tending ants on parasitoids of phloem-feeding hemipterans in many
232 different ecosystems.

233

234 **III. HOW DO TROPHOBIOTIC ANTS PROTECT PHLOEM-FEEDING 235 HEMIPTERANS FROM THEIR PARASITOIDS?**

236 Ants protect their mutualistic phloem-feeding hemipterans in several ways. These
237 protective mechanisms have been widely studied both in the field and under laboratory
238 conditions (see online Supporting Information, Table S1), and have variable
239 consequences for the parasitoids, ranging from reduced longevity or fertility to
240 mortality (Fig. 2).

241

242 **(1) Direct mechanisms**

243 *(a) Ants attack adult parasitoids*

244 To attack adult parasitoids, ants first need to recognize the parasitoids of phloem-
245 feeding hemipterans using either olfactory, mechanical, or visual cues. Among these
246 cues, chemical–olfactory signals, such as cuticular hydrocarbons (CHCs) of parasitoids,
247 are likely the most important (Liepert & Dettner, 1993; Hertaeg *et al.*, 2023). Ants can
248 also detect volatile alarm cues released by hemipterans when these are attacked by
249 parasitoids (Verheggen *et al.*, 2012). In addition, previous experience can help

250 trophobiotic ants recognize parasitoids as antagonists, as it is assumed for some
251 predators of hemipterans (Novgorodova, 2015).

252 Once attending ants recognize the searching parasitoid approaching the colony,
253 they rapidly approach it and usually tap it with their antennae (Takada & Hashimoto,
254 1985; Völkl & Mackauer, 1993; Kaneko, 2002; Feng *et al.*, 2015). Afterwards, the ants
255 typically open their mandibles to seize the parasitoid (Kaneko, 2002; Hübner & Völkl,
256 1996; Fanani *et al.*, 2020). Most parasitoids tend to flee, but ants can follow (Völkl &
257 Kroupa, 1997), or capture them with their mandibles (Völkl *et al.*, 1996; Völkl &
258 Mackauer, 1993; Dejean, Ngriegue & Borgoin, 1996). Additionally, neighbouring ant
259 workers can join the pursuit to attack the parasitoid (Völkl *et al.*, 1996; Dejean *et al.*,
260 1996; Barzman & Daane, 2001). During capture, ants may bite the parasitoid on
261 different body parts (Hübner & Völkl, 1996; Völkl *et al.*, 1996; Völkl, 1992;
262 Stechmann, Völkl & Stary, 1996; Tanga *et al.*, 2015; Takada & Hashimoto, 1985;
263 Barzman & Daane, 2001). Ants sometimes transport the seized parasitoid to their nest
264 (Dejean *et al.*, 1996). While most studies have observed that ants pursue and bite
265 parasitoids, none has reported that ants spray formic acid or other compounds against
266 parasitoids.

267 Attending ants will attack the adult parasitoid at all stages of its approach: while
268 recognizing the hemipteran colony using its antennae; laying its egg/s (Heimpel,
269 Rosenheim & Mangel, 1997; Kaneko, 2003b; Daane *et al.*, 2007; Beltrá, Soto & Tena,
270 2015; Tanga *et al.*, 2015; Feng *et al.*, 2015; Fanani *et al.*, 2020); or while feeding on
271 hemipteran haemolymph (host feeding) or honeydew (Chan & Godfray, 1993) (Fig. 2).
272 If the parasitoid succeeds in parasitizing its host, ants can also attack its offspring when
273 they emerge. Ants might also attack adult parasitoids when they are resting, searching,
274 mating or feeding on other resources (e.g. nectar or pollen) on outside the hemipteran

275 colony (Vollhardt *et al.*, 2010; Nyabuga *et al.*, 2012; Tanga *et al.*, 2015; Tena, Bouvet &
276 Abram, 2022).

277 The consequences of these ant attacks are highly variable for adult parasitoids
278 (Fig. 2). While captured parasitoids can be severely injured or killed, most parasitoids
279 jump or fly away to avoid ant attacks (Hübner & Völkl, 1996; Völkl *et al.*, 1996, 1992;
280 Stechmann *et al.*, 1996; Powell & Silverman, 2010; Feng *et al.*, 2015; Tanga *et al.*,
281 2015; Tena, Stouthamer & Hoddle, 2017). Even if parasitoids escape, ant attacks can
282 have a cost for the surviving parasitoid, such as reduction of its current or future
283 reproductive capacity, or longevity (e.g. Völkl, 1992, 1994; Zhou *et al.*, 2014; Barzman
284 & Daane, 2001; Martínez-Ferrer, Grafton-Cardwell & Shorey, 2003; Beltrá, Soto &
285 Tena, 2015; Tena *et al.*, 2017; Fanani *et al.*, 2020). Additionally, ant attacks can affect
286 the sex ratio of the parasitoid offspring when, because of an attack, female parasitoids
287 are unable to fertilize their eggs (Tanga *et al.*, 2015). Finally, ant attacks can reduce
288 parasitoid resting time (Vinson & Scarborough, 1991; Völkl & Novak, 1997), with the
289 resulting increase in energy consumption potentially reducing parasitoid longevity and
290 fecundity.

291

292 (b) *Ants attack immature parasitoids*

293 Parasitoids of phloem-feeding hemipterans are mainly endoparasitoids
294 (Labandeira & Li, 2021; Cruaud *et al.*, 2024). This means that their larvae and pupae
295 develop inside the parasitized hemipteran until they emerge as adults. Interestingly,
296 some ant species can detect and bite parasitized hemipterans, likely killing the immature
297 parasitoids (Fig. 2) (Takada, 1983; Vinson & Scarborough, 1991; Tanga *et al.*, 2015;
298 Plata *et al.*, 2025), although the signals ants use to recognize parasitized hemipterans
299 remain to be clarified.

300

301 **(2) Indirect mechanisms**

302 The presence of ants tending to hemipterans can deter a searching parasitoid (Fig.
303 2). Adult parasitoids can detect ants using visual, mechanical, and chemical cues (Dicke
304 & Grostal, 2001; Xu *et al.*, 2020; Mouratidis *et al.*, 2021). Chemical cues, such as
305 CHCs of ants, can deter a searching parasitoid even when ants are not attending the
306 hemipteran colonies (Xu *et al.*, 2020; Mouratidis *et al.*, 2021), which can be considered
307 as an example of ‘ecology of fear’ (Zanette & Clinchy, 2019). This deterrence may
308 explain the increased time invested by the adult parasitoid to locate a suitable
309 hemipteran host when ants are present (e.g. Vinson & Scarborough, 1991; Tanga *et al.*,
310 2015; Fanani *et al.*, 2020), with a potential cost in terms of energy, longevity and
311 fecundity. Additionally, ant cues might affect other parasitoid behaviours such as
312 feeding, mating, or resting in the ant foraging areas.

313

314 **IV. COUNTERSTRATEGIES OF PARASITOIDS**

315 Parasitoids of phloem-feeding hemipterans have evolved behavioural, chemical,
316 and morphological traits that can reduce or limit the impact of trophobiotic ants (Table
317 1). While many of these adaptations include generalist responses to avoid attacks from
318 ants or other organisms, others, such as chemical mimicry, are highly specific. In a few
319 cases, these adaptations of parasitoids even allow them to benefit from the presence of
320 ants.

321

322 **(1) Behavioural strategies**

323 Adult parasitoids run, jump, or fly away to escape from antagonists, including
324 ants (e.g. Novak, 1994; Barzman & Daane, 2001; Herbert & Horn, 2008) (Table 1). In

325 addition to these generalist behaviours, some parasitoid species show better adaptations
326 to trophobiotic ants and move quickly or parasitize faster to avoid their attacks. These
327 species may increase their success in the presence of trophobiotic ants because of
328 reduced competition or intraguild predation (Barzman & Daane, 2001; Daane *et al.*,
329 2007; Powell & Silverman, 2010; Zhou *et al.*, 2014; Kistner *et al.*, 2017; Xu *et al.*,
330 2020; Mouratidis *et al.*, 2021). For example, the mealybug parasitoid *Pseudaphycus*
331 *flavidulus* is able to parasitize in the presence of tending ants, while the parasitoid
332 *Leptomastix epona*, which moves more slowly while handling its host, can be attacked
333 and killed by ants before it is able to oviposit (Daane *et al.*, 2007). *Coccidoxenoides*
334 *perminutus*, another mealybug parasitoid, has rapid and non-discriminatory oviposition
335 behaviour which enables it to be less affected by tending ants than slower-ovipositing
336 mealybug parasitoids such as *Anagyrus pseudococci* (Sime & Daane, 2014).
337 *Metaphycus hageni*, a soft scale parasitoid with a long handling time and slow
338 oviposition, is unable to parasitize its host when it is ant-attended. Other *Metaphycus*
339 species with shorter oviposition time are more successful (Barzman & Daane, 2001).
340 Parasitoid species that perform other activities, such as mating or feeding, faster might
341 have a higher likelihood of success in the presence of aggressive ants, although these
342 traits have not been evaluated.

343 Some species of hemipteran parasitoids perform cryptic movements (i.e.
344 inconspicuous movement by walking slowly) or show ant-like locomotory behaviour
345 (e.g. ant-like antennation). These behaviours may reduce ant detection and/or
346 aggression, but may also function to deceive other potential antagonists or to reduce
347 defensive behaviours of hemipterans (Hübner & Völkl, 1996; Rasekh *et al.*, 2010).
348 Another parasitoid strategy to defeat ants is to forage in areas where ants move less
349 effectively, where it is harder for them to capture parasitoids (Völkl & Kroupa, 1997).

350 Some parasitoid species detect ant cues and use this to reduce their exposure to
351 trophobiotic ants (e.g. Zhou *et al.*, 2014; Sime & Daane, 2014; Beltrá *et al.*, 2015). Ant-
352 avoidance might also explain why some parasitoid species forage and mate outside their
353 natal patch (Mackauer & Völkl, 2002; Nyabuga *et al.*, 2012). Future research could also
354 investigate whether parasitoids of hemipterans search for hosts when ants are less
355 active. For example, during hot Mediterranean summers, the trophobiotic ant species
356 *Lasius grandis* reduces hemipteran attendance at noon, and parasitoids might use this
357 window to attack their hemipteran hosts (Pekas *et al.*, 2011).

358 Finally, the ability of parasitoids to learn may also modulate the effects of
359 trophobiotic ants (Giunti *et al.*, 2015). Some parasitoid species can learn from
360 encounters with trophobiotic ants and modify their behaviour accordingly. For example,
361 naïve females of the aphid parasitoids *Pauesia picta* and *Pauesia pinicollis* flee when
362 encountering an ant. However, after non-aggressive ant encounters, experienced female
363 parasitoids change their behaviour by approaching ants from the side and at an
364 increased distance. These experienced females have a higher oviposition rate than naïve
365 females or females searching for an unattended host (Völkl 2001).

366

367 **(2) Chemical strategies**

368 In general, ants have high sensitivity to chemical cues, and many organisms use
369 chemical signals to deceive them (Akino, 2008). Some parasitoids of phloem-feeding
370 hemipterans use chemical mimicry (e.g. a CHC profile similar to that of their
371 hemipteran hosts) to avoid detection by tending ants or to reduce ant aggressiveness
372 (Hübner & Völkl, 1996; Völkl, 1997) (Table 1). Host chemical mimicry has been
373 studied in aphid parasitoids of the genus *Lysiphlebus*, which are often not attacked by
374 trophobiotic ants of the genera *Lasius* and *Myrmica* (Völkl, 1992, 1994; Völkl &

375 Mackauer, 1993; Liepert & Dettner, 1993, 1996; Hertaeg *et al.*, 2023). Alternatively,
376 other parasitoid species possess a CHC profile similar to that of ant larvae. This has
377 been observed in two species of parasitoids of root aphids belonging to genus *Paralipsis*
378 (Takada & Hashimoto, 1985; Völkl *et al.*, 1996; Akino & Yamaoka, 1998). *Paralipsis*
379 parasitoids wrongly identified as ant larvae are carried by ant workers to their colony
380 and fed through trophallaxis. By rubbing the ants, parasitoids acquire the specific odour
381 of the ant colony. Outside the colony, this odour allows them to parasitize their aphid
382 hosts without being attacked by workers from the ant colony they have lived with. It has
383 been observed that parasitoids with chemical mimicry strategies that allow them to
384 avoid being attacked by ants prefer to forage in ant-attended patches (Völkl, 1994;
385 Akino & Yamaoka, 1998).

386 Another strategy of parasitoids is to release ant deterrents (Völkl, Hübner &
387 Dettner, 1994; Hübner, 2000). Females of the aphid hyperparasitoid *Alloxysta brevis*
388 release a mandibular secretion containing actinidin and other compounds in response to
389 an ant attack. This secretion functions both in self-defence if the female is seized by an
390 ant worker, by acting a repellent, and prevents ant attacks during subsequent encounters
391 (Völkl *et al.*, 1994). Hübner *et al.* (2002) found these mandibular gland secretions to be
392 present in many alloxystine parasitoids belonging the genera *Alloxysta* and
393 *Phaenoglyphis*, including species of parasitoids whose hemipteran hosts are not
394 attended by ants. They found that the released compounds were also deterrent to other
395 parasitoid antagonists such as spiders (Hübner & Dettner, 2000), implying that this
396 defensive mechanism is not ant specific. Although the release of defensive chemicals is
397 common among other natural enemies of hemipterans, such as predatory coccinellids
398 (Majerus *et al.*, 2007; Plata *et al.*, 2024c), for hemipteran parasitoids it has only been
399 demonstrated in alloxystine wasps. Ant-deterrent chemicals have been identified in

400 parasitoids of flies, such as the figtid *Leptopilina heterotoma* (Stökl *et al.*, 2012). This
401 strategy may be widespread but remains to be investigated for most parasitoids.

402

403 (3) Morphological adaptations

404 The morphology of parasitoids can also play a key role against ants. For example,
405 features of parasitoids such as body hardness and shape can also vary among species.
406 One study showed that the body of the parasitoid *Aphidius ervi* can survive greater
407 pressures than that of smaller parasitoids such as *Lysiphlebus cardui* and *Aphidius*
408 *rhopalosiphi* (Hübner & Dettner, 2000). This increased hardness translated into lower
409 mortality when the parasitoids were attacked by a spider, although it was not evaluated
410 against ants. On the other hand, the small size of some parasitoids, such as
411 *Coccidoxenoides*, has been postulated as a morphological adaptation to reduce detection
412 by ants (Sime & Daane, 2014). Other morphological traits, such as the tubiform and
413 telescoped abdomen found in female parasitoids of the genus *Protaphidius*, have also
414 been associated with ants. *Protaphidius* parasitoids are specialized to *Stomaphis* aphids
415 that live in bark crevices and are always attended by ants. It has been suggested that this
416 telescoped abdomen may serve not only to reach the aphids in deep crevices of the bark,
417 but also to oviposit from behind the attending ants (Takada, 1983). Furthermore,
418 myrmecomorphy, a morphological resemblance to ants, is known from several
419 parasitoids of phloem-feeding hemipterans (Table 1). For example, *Encyrtus* and
420 *Holcencyrtus* resemble ants by either an absence of wings or camouflaging them
421 (McIver & Stonedahl, 1993; Kelly *et al.*, 2022). Although these visual signals might not
422 deceive ants because they typically use chemosensation (Jackson & Ratnieks, 2006), an
423 ant-like appearance may benefit parasitoids against other antagonists, such as intraguild
424 predators (Malcicka *et al.*, 2015).

425

426 **V. FACTORS MODULATING INTERACTIONS BETWEEN TROPHOBIOTIC**
427 **ANTS AND PARASITOIDS OF PHLOEM-FEEDING HEMIPTERANS**

428 The outcome of interactions between trophobiotic ants and parasitoids of phloem-
429 feeding hemipterans will depend on traits of hemipterans, ants, and parasitoids, which
430 may vary both inter- and intraspecifically (Table S2; see Table S3 for definitions of each
431 measure). Furthermore, various external biotic and abiotic factors can modulate ant-
432 hemipteran-parasitoid interactions (Fig. 3).

433

434 **(1) Hemipteran host**

435 The effects of trophobiotic ants on parasitoids of phloem-feeding hemipterans
436 have been studied in 45 hemipteran species, belonging to 30 genera and ten families
437 (Fig. 4). Most of studies focus on a few aphid species, mainly *Aphis fabae*, that
438 dominate in temperate ecosystems; the number of studies on hemipteran families that
439 dominate in tropical ecosystems is much lower (Vilcinskas, 2016; Kondo & Watson,
440 2022). This lack of knowledge is particularly important because hemipteran-tending
441 ants dominate plant canopies in the tropics (Davidson & Patrell-Kim, 1996; Blüthgen *et*
442 *al.*, 2000).

443 The general pattern is that ants have negative effects on parasitoidss of
444 hemipterans, but these effects depend on the species of hemipteran that ants attend
445 (Table S2). This is likely because the number of tending ants per hemipteran (i.e.
446 relative ant attendance) and their aggressivity depends on the quantity and quality of the
447 honeydew excreted (Völkl *et al.*, 1999; Woodring *et al.*, 2004; Völkl & Novak, 1997;
448 Pekas *et al.*, 2011; Tena, Hoddle & Hoddle, 2013a; Plata *et al.*, 2024b, 2025), and both
449 quantity and quality vary inter- and intraspecifically among hemipterans (Detrain *et al.*,

450 2010; Vantaux *et al.*, 2011; Katayama *et al.*, 2013; Hogervorst, Wäckers & Romeis,
451 2017; Tena, Llácer & Urbaneja 2013b, Tena *et al.*, 2018b; Urbaneja-Bernat *et al.*, 2024).
452 In addition to honeydew nutritional value, hemipteran specific semiochemicals such as
453 pheromones, CHCs, and volatiles produced by honeydew bacteria, mediate location,
454 recognition, selection and learning by mutualistic ants (Xu & Chen, 2021). For instance,
455 some hemipterans produce CHCs that resemble those of tending ants, which may inhibit
456 ant aggression and induce ant attendance (Endo & Itino, 2013). Thus, ant attendance is
457 highly variable among hemipteran species, from hemipterans that are obligate ant-
458 mutualists, such as the aphid tribe Fordini, to those that are not attended by ants, such as
459 the aphid *Brachycaudus mimeuri* (Depa *et al.*, 2020).

460 Importantly, the ant-attention received by a hemipteran and the aggressiveness of
461 ants protecting it are also modulated by the presence and abundance of neighbouring
462 honeydew-producing hemipterans both at the intra- and interspecific levels. On some
463 plants, different hemipteran species can share ants from the same nest and compete for
464 their attendance at low ant densities (Cushman & Addicott, 1989; Cushman & Whitham,
465 1991; Woodring *et al.*, 2004; Pekas *et al.*, 2011; Tena, 2013b). For example, in the
466 Mediterranean region, mealybugs infesting citrus trees are highly attended by dominant
467 trophobiotic ants that do not attend aphids or whiteflies when mealybugs are present
468 (Pekas *et al.*, 2011; Tena *et al.*, 2013a). Hemipterans also compete for ant-attention
469 intraspecifically, and individuals that excrete a lower quality or amount of honeydew
470 may not be attended and may even be predated by ants (Cushman & Addicott, 1989;
471 Sakata, 1994; Vantaux *et al.*, 2011; Matsuura *et al.*, 2025). Interestingly, hemipteran
472 traits facilitating ant attendance can also indirectly affect parasitoids in various ways.
473 For example, an improvement in the quality of honeydew, or the development of

474 structures that retain rather than expel honeydew, would benefit both tending ants and
475 also parasitoids that feed on honeydew (Tena *et al.*, 2016).

476 Another important factor modulating the effect of ants on parasitoids is the size of
477 the hemipteran colony attended by ants. Several studies suggest that the effects of ants
478 on parasitoids is enhanced as hemipteran colony size increases (Völkl, 1994; Itioka &
479 Inoue,). This is likely because larger colonies of hemipterans are more attractive to ants
480 and, therefore, have a higher probability of ant attendance and a higher number of
481 tending ants (absolute ant attendance) (Plata *et al.*, 2024b, 2025). By contrast, the
482 ant:hemipteran ratio (relative ant attendance) is higher in smaller attended colonies.
483 Therefore, although the likelihood of being attended by ants increases with hemipteran
484 colony size, individuals in smaller attended colonies may be better protected (Breton &
485 Addicott, 1992; Harmon & Andow, 2007).

486 Finally, microbial endosymbionts of hemipterans, which can vary extensively
487 among species but also intraspecifically, can influence many ecologically relevant traits
488 of their hosts (Olivier *et al.*, 2010). Some of these endosymbionts can provide
489 protection for hemipterans against their parasitoids. Interestingly, the presence of
490 tending ants may reduce the abundance of these defensive endosymbionts of
491 hemipterans (Mandrioli *et al.*, 2016). These endosymbionts also can indirectly modulate
492 the impact of trophobiotic ants on the parasitoids of hemipterans. First, they can
493 modulate the attraction of ants because they can affect the composition of honeydew
494 and thus its volatiles (Schillewaert *et al.*, 2017). Second, endosymbionts can affect the
495 CHC profile of hemipterans that is used by ants for trophobiont recognition (Hertaeg *et*
496 *al.*, 2021). This may have important implications for the establishment of mutualisms
497 between ants and hemipterans. Strikingly, the CHCs of hemipteran hosts may also affect

498 the CHC profiles of parasitoids and the aggressiveness of ants towards them (Hertaeg *et*
499 *al.*, 2023).

500

501 **(2) Trophobiotic ant**

502 The effects of trophobiotic ants on parasitoids of hemipterans have been evaluated
503 in 40 ant species belonging to 18 different genera, with *Lasius* being the most studied
504 genus in terms of both the number of species the number of studies (Fig. 4; Table S2).
505 Some trophobiotic ant species are more aggressive than others when they attend to
506 hemipterans (Buckley & Gullan, 1991; Stechmann *et al.*, 1996; Hübner & Völk, 1996;
507 Hübner, 2000; Kaneko, 2007), and aggressiveness may determine their impact on
508 parasitoids of hemipterans (Buckley & Gullan 1991). For example, *Lasius niger* is more
509 aggressive than *Pristomyrmex pungens* against the aphid parasitoid *Lysiphphlebus*
510 *japonicus* (Kaneko, 2003b). Similarly, the parasitoid *Anagyrus lopezi* is more affected
511 by the ant *Oecophylla smaragdina* than by *Anoplolepis gracilipes* or *Dolichoderus*
512 *thoracicus*, which are less aggressive, when the parasitoid attacks the cassava mealybug
513 *Phenacoccus manihoti* (Fanani *et al.*, 2020). Both the number of tending ants and their
514 aggressiveness in defending hemipterans from parasitoids can also be strongly
515 influenced by seasonality. This is because the nutritional demands of ants change
516 throughout the year, leading to significant dietary shifts across seasons (Mooney &
517 Tillberg, 2005).

518 The behavioural responses of ants toward hemipterans and their parasitoids also
519 depends on the ability of ants to recognize hemipterans as trophobiont partners and their
520 parasitoids as antagonists. This cognitive ability may vary considerably among ants and
521 can be both innate and based on previous experience. For example, some ant species can
522 innately recognize long-chain CHCs produced by certain hemipterans (Endo & Itino,

523 2013; Salazar *et al.*, 2015). Ants also leave their own CHCs on the attended
524 hemipterans, resulting in reduced aggression from ant nestmates towards these ‘marked’
525 hemipterans (Sakata, 1994; Endo & Itino, 2012; Foronda *et al.*, 2025). Furthermore,
526 ants are exceptionally skilled at associating scents with food rewards (e.g. Huber &
527 Knaden, 2018; Czaczkes & Kumar, 2020). Different ant species, including *Linepithema*
528 *humile*, *Pristomyrmex punctatus*, *Tetramorium tsushimae*, and *Lasius niger*, can learn to
529 associate the CHCs of hemipterans with a honeydew reward (Choe & Rust, 2006; Hojo
530 *et al.*, 2014; Hayashi, Nakamura & Nomura, 2015; Hertaeg *et al.*, 2021). Trophobiotic
531 ant species with higher learning capacity therefore might establish new trophobiotic
532 relationships with non-coevolved hemipterans more easily (Plata *et al.*, 2024b, 2025).
533 Similarly, the aggressiveness of ants towards the natural enemies of hemipterans can be
534 innate (Novgorodova, 2015; Dorosheva, Yakovlev & Reznikova, 2011), but experience
535 may also play a role in the recognition of antagonists by some ant species (Hollis *et al.*,
536 2017). The variability of innate *versus* learned responses towards the parasitoids of
537 hemipterans among different ant species remains to be evaluated.

538 Other ant traits might modulate their impact on the parasitoids of hemipterans. For
539 example, traits that facilitate resource monopolization by ants, such as increased colony
540 size, polydomy (i.e. the ability to establish nests in various locations), or polygyny (i.e.
541 several queens in the nest, which is associated with lower intraspecific aggression), have
542 been linked to higher ant-attendance levels of hemipterans (Blüthgen & Fiedler 2004;
543 Oliver, Leather & Cook, 2008; Nelson & Mooney, 2022).

544

545 **(3) Parasitoid**

546 The effects of ants on parasitoids of hemipterans have been specifically evaluated
547 in 86 different parasitoid species (Table S2). Most studied parasitoid species are primary

548 parasitoids, while the impact of ants on a few hyperparasitoids has been studied
549 particularly for some aphid hosts such as *Aphis fabae* (Fig. 4; Table S2). A variety of
550 chemical, morphological and behavioural traits of parasitoids modulate their
551 interactions with trophobiotic ants and some of these traits are species specific (see
552 Section IV). As illustrative examples, Barzman & Daane (2001) found that different
553 species of parasitoids of the same genus respond differently when they attack the soft
554 scale *Saissetia oleae* that it is tended by the Argentine ant *Linepithema humile*. Unlike
555 *Metaphycus annekei*, *Metaphycus hageni* is unable to parasitize *S. oleae* when it was
556 attended by ants. The authors suggested that this is likely because *M. annekei* needs
557 less handling and oviposition time and, therefore, can escape before the ants attack.
558 Likewise, Liepert & Dettner (1993) found that the ant *Lasius niger* is aggressive
559 towards the aphid parasitoid *Trioxys angelicae*, but the parasitoid *Lysiphlebus cardui*,
560 which possesses aphid-like CHCs, is not treated aggressively. Furthermore, genotypic
561 variation can explain intraspecific variability of parasitoids facing trophobiotic ants.
562 Using different lines of the parasitoid *Lysiphlebus fabarum*, Hertaeg *et al.* (2023)
563 showed that the genotype affected parasitoid CHC profiles and aggression by the ant *L.*
564 *niger*.

565 Ants can also negatively affect parasitoid antagonists, including parasitoid
566 predators (Kaneko, 2003a, 2007), competing parasitoids, and hyperparasitoids (Völkl,
567 1992; Hübner & Völkl, 1996). Therefore, some parasitoid species may benefit indirectly
568 from an enemy-free space created by tending ants. For example, the parasitoid
569 *Lysiphlebus cardui* benefits indirectly when its host *Aphis fabae* is attended by *Lasius*
570 *niger* ants because these ants reduce the density of hyperparasitoids (Völkl, 1992). The
571 same occurs with the parasitoid *Prionomitus mitratus*, which benefits from the ants
572 *Lasius niger* and *Formica pratensis* attending its host, the psyllid *Cacopsylla crataegi*,

573 due to a decrease in hyperparasitism (Novak, 1994). Kaneko (2003a) observed that the
574 parasitoid *Lysiphlebus japonicus* suffered less hyperparasitism and predation when its
575 aphid host *Toxoptera citricidus* was attended by the ant *Pristomyrmex pungens*.

576

577 **(4) Host plant**

578 The host plant where the hemipteran settles and feeds can also modulate the
579 interactions between trophobiotic ants and parasitoids of phloem-feeding hemipterans.
580 For example, Völkl (1997) found that the parasitoid *Trioxys angelicae* has a higher
581 oviposition success in colonies of the aphid *Aphis fabae* that are attended by ants when
582 these colonies are on goosefoot (*Chenopodium* spp.) rather than on creeping thistle
583 (*Cirsium arvense*) or spindle bush (*Euonymus europaeus*). Similarly, Zhou, Kuang &
584 Gao (2015b) found that the parasitoid *Anagyrus babawalei* parasitizes more mealybugs
585 of the species *Phenacoccus solenopsis* attended by *Tapinoma melanocephalum* when
586 the mealybug is settled on tomato (*Solanum lycopersicum*), rather than on cotton
587 (*Gossypium hirsutum*) plants.

588 How host plants modulate these interactions is poorly known, but there are several
589 possibilities. First, plant-derived food sources rich in sugars, such as nectar, extrafloral
590 nectar, or guttation, might compete with hemipterans for the attention of ants (Engel *et*
591 *al.*, 2001; Blüthgen, Stork & Fiedler, 2004; Blüthgen & Fiedler, 2004; Del-Claro *et al.*,
592 2016; Heil, 2015; Urbaneja-Bernat *et al.*, 2023), and can also supply food to the
593 interacting parasitoids (Jamont, Crépellière & Jaloux, 2013). Therefore, plant species
594 with different types of resources might affect the interaction between ants and
595 parasitoids in different ways. Similarly, host plants have specific phloem composition
596 that affects the composition of honeydew excreted by the same hemipteran species
597 (Fischer & Shingleton, 2001; Fischer, Völkl & Hoffmann, 2005; Pringle *et al.*, 2014;

598 Tena *et al.*, 2018b; Urbaneja-Bernat *et al.*, 2024). As explained in Section V.1,
599 honeydew composition affects both the number and aggressivity of ants attending
600 hemipterans (Völkl *et al.*, 1999; Woodring *et al.*, 2004). Furthermore, the foraging
601 behaviour of parasitoids is affected by plant volatiles (Pickett & Khan, 2016; Turlings &
602 Erb, 2018). Interestingly, the presence of trophobiotic ants attending hemipterans can
603 induce changes in the volatile compounds emitted by plants, which can mediate
604 parasitoid attraction (Paris, Llusia & Peñuelas, 2010; Huang *et al.*, 2017). Other factors,
605 such as plant architecture, may be also important because some plant structures can
606 serve as refugia for parasitoids against ants (Mackauer & Völkl, 1993).

607 Even within the same plant, the effect of ants on parasitoids of phloem-feeding
608 hemipterans might vary depending on the plant organ where the interaction occurs. For
609 example, the parasitoid *Pauesia silvestris* suffers lower mortality due to aggression of
610 the ant *Formica polyctena* when it searches for the aphid *Cinara pineae* on pine needles
611 than for *Cinara pini* on pine bark (Völkl & Kroupa, 1997). Although there are two
612 variables here (aphid species and plant organ), Völkl & Kroupa (1997) suggested that
613 the parasitoid could avoid ant attacks in the pine needles because ants move less easily
614 on this substrate.

615

616 **(5) Other factors**

617 The interactions between trophobiotic ants and parasitoids of hemipterans occur in
618 plants that are part of complex ecosystems modulated by multiple external factors. For
619 example, surrounding habitats can affect the entire arthropod community of a host plant
620 (Landis, Wratten & Gurr, 2000; Smith & Schmitz, 2016). While the mutualistic
621 interaction between ants and hemipterans can be independent of the landscape context
622 in some ecosystems (Stutz & Entling, 2011), recent studies have revealed that landscape

623 composition may have a strong effect on ant–hemipteran–parasitoid interactions in
624 others. For example, in urban green spaces in the UK, the abundance of the aphid *Aphis*
625 *faba* feeding on *Vicia faba* plants was not affected by landscape composition, but
626 attendance by the ant *Lasius niger* decreased with habitat diversity, which may result in
627 a reduced impact of ants on parasitoids (Rocha & Fellowes, 2020). Kulikowski (2020)
628 found that parasitism of the soft scale *Alecanochiton marquesi* was negatively affected
629 by the presence of the trophobiotic ant *Wasmannia auropunctata*, but only at sites with
630 high surrounding landscape forest cover. Interestingly, this suggests that habitat-
631 management strategies on a landscape scale could be used to reduce the impact of ants
632 on the parasitoids of hemipterans. These habitat-management strategies could also be
633 applied on a local scale. For example, Blubaugh *et al.* (2024) found that cover crops can
634 elicit a shift in the foraging behaviour of the ant *Solenopsis invicta* in cotton, from
635 foraging on leaves of cotton plants to foraging on the ground, thus reducing ant
636 attendance of aphids feeding on cotton plants. Other habitat-management strategies
637 include providing artificial sugar sources to distract ants from attending hemipterans,
638 reduce ant aggressivity, and facilitate parasitoid attacks on hemipterans (Wäckers *et al.*,
639 2017; Chinarelli *et al.*, 2021; Pérez-Rodríguez *et al.*, 2021; Fernández de Bobadilla *et*
640 *al.*, 2024; Schifani, Giannetti & Grasso, 2024).

641 In agroecosystems, conventional agronomic practices can also modulate the
642 impact of trophobiotic ants on parasitoids of phloem-feeding hemipterans. For example,
643 tillage can have wide effects on arthropod community structure in the host plant
644 (Sharley, Hoffmann & Thomson, 2008; Patterson, Sanderson & Eyre, 2019). Irrigation
645 or fertilization both influence the growth and nutritional status of host plants, which in
646 turn affects the amount and composition of honeydew excreted by hemipterans (Baqui
647 & Kershaw, 1993; Blua & Toscano, 1994). Critically, the use of insecticides may affect

648 hemipterans, parasitoids, ants, and the organisms interacting with them in different ways
649 (Waage, Hassell & Godfray, 1985; Teder & Knapp, 2019; Calvo-Agudo *et al.*, 2022).

650 Climatic conditions can also affect ant–hemipteran mutualisms by altering
651 hemipteran growth and behaviour, honeydew composition, or semiochemistry
652 (Blanchard *et al.*, 2019). These conditions can also impact the behaviour of trophobiotic
653 ants within ant–hemipteran interactions (Barton & Ives, 2014; Mooney *et al.*, 2019). For
654 example, Barton & Ives (2014) found that warmer temperatures reduced the
655 aggressivity of winter ants when attending aphids. By contrast, warming can also
656 strengthen ant–hemipteran mutualisms (Zhou *et al.*, 2017; Nelson *et al.*, 2019). Zhou *et*
657 *al.* (2017) found that the performance of the ant *Tapinoma melanocephalum* attending
658 the mealybug *Phenacoccus solenopsis*, including tending level, aggression, activity, and
659 honeydew consumption, was enhanced by temperature warming, which might result in
660 enhanced protection of hemipterans against parasitoids.

661 Finally, ant–hemipteran–parasitoid dynamics can be altered by the spread of
662 invasive species. In fact, hemipterans and ants are themselves amongst the most
663 invasive arthropod species (Bertelsmeier *et al.*, 2015; Liebhold *et al.*, 2024). These
664 invasions often result in novel interactions between ants and non-coevolved
665 hemipterans. Ants can rapidly adapt to attend hemipterans with which they have not
666 coevolved. Thus, invasive hemipterans may compete with resident hemipterans for the
667 attention of ants, while invasive ants may compete with resident ants to exploit
668 hemipterans (Tena *et al.*, 2013a; Wang *et al.*, 2021; Plata *et al.*, 2024a, 2025). Such
669 emerging interactions between non-coevolved ants and hemipterans also represent a
670 challenge for the parasitoids of hemipterans. For example, the parasitoid *Tamarixia*
671 *radiata*, native to Asia, was imported to California to control the psyllid *Diaphorina*
672 *citri* in citrus, but the presence of the Argentine ant *Linepithema humile* decreased the

673 establishment and efficacy of the parasitoid in urban areas (Milosavljević *et al.*, 2021).

674 It is possible that parasitoids may be able to reduce the impact of these non-coevolved

675 ants, as has been specifically evaluated for some predators of hemipterans (Plata *et al.*,

676 2024c). However, these remain to be assessed.

677

678 VI. CONCLUSIONS

679 (1) The interactions between parasitoids of phloem-feeding hemipterans and

680 trophobiotic ants have evolved over millions of years and are widely distributed both

681 geographically and phylogenetically. However, research on these interactions is

682 asymmetric, with a bias towards certain taxa and ecosystems. Most studies have focused

683 on temperate climates, crop plants, a few aphid species such as *Aphis fabae* and their

684 parasitoids, and the ant species *Lasius niger*. Broadening the range of taxa and

685 ecosystem types will shed light on how these interactions have shaped the evolution of

686 phloem-feeding hemipterans, their parasitoids, and trophobiotic ants. We especially

687 encourage studies of these interactions in natural and semi-natural habitats from tropical

688 and subtropical ecosystems that are dominated by other phloem-feeding hemipterans,

689 such as mealybugs, psyllids, or soft scales. This knowledge gap is particularly

690 significant considering the dominance of canopy-foraging ants in the tropics.

691 (2) In general, the presence of trophobiotic ants reduces parasitism of phloem-feeding

692 hemipterans. However, recent findings suggest that the underlying mechanisms are

693 more complex than expected and still not well understood. For example, while

694 extensive research has evaluated the direct attacks of trophobiotic ants on adult

695 parasitoids, very few have assessed their impact on immature parasitoids that may also

696 be recognized and attacked by ants. Similarly, the role of the ‘ecology of fear’ in these

697 interactions has been poorly recognized, and may reveal new mechanisms that imply
698 different costs for parasitoids.

699 (3) Parasitoids have evolved a series of behavioural, chemical, and morphological traits
700 that can reduce the impact of trophobiotic ants. The diversity and specificity of these
701 traits suggest that ant attendance may represent an important ecological constraint that
702 led to adaptive radiation in parasitoids of phloem-feeding hemipterans. Multi-trait
703 phylogenetic analyses should explore whether these traits have arisen as a result of
704 selection by trophobiotic ants. In addition, it would be interesting for future studies to
705 evaluate the plasticity of the varied behavioural strategies of parasitoids. Such
706 behavioural plasticity could be critical for the success of parasitoids in future changing
707 environments.

708 (4) Cognitive abilities of both ants and parasitoids may determine the outcome of their
709 interactions. Some parasitoid species learn from ant encounters and adjust their
710 behaviours, and there is ample evidence that the associative learning ability of ants
711 plays a key role in recognizing hemipterans as trophobionts. However, little is known
712 about the innate and learned responses of ants towards the parasitoids of hemipterans.
713 The interactions between ants, mutualistic hemipterans, and their parasitoids, represent
714 an excellent model to study the cognitive ecology of multi-trophic interactions.

715 (5) Microbial endosymbionts of hemipterans can modulate the impact of trophobiotic
716 ants on hemipteran parasitoids. These endosymbionts can affect the composition of
717 honeydew, and the CHC profiles of hemipterans, thereby modulating the chemical
718 communication between ants and hemipterans. Hemipteran endosymbionts may also
719 affect some traits of their parasitoids, including their CHC profiles, which can determine
720 the aggressivity of ants towards them. Recent advances in molecular techniques that

721 facilitate the study of microecology could provide important insights into the role of
722 endosymbionts in these interactions.

723 (6) The spread of invasive species means bringing together phloem-feeding
724 hemipterans, trophobiotic ants and parasitoids that do not share an evolutionary history.
725 Ants can adapt rapidly to attend non-coevolved hemipterans, thus the parasitoids of
726 these hemipterans will also encounter these ants. However, the mechanisms that allow
727 parasitoids of hemipterans to adapt to these non-coevolved ants need to be investigated.

728 We propose that classical biological control programs, where parasitoids are introduced
729 to control invasive hemipterans, represent useful model systems to study if and how
730 parasitoids adapt to new trophobiotic ant species.

731 (7) Knowledge regarding the interactions between trophobiotic ants and parasitoids of
732 phloem-feeding hemipterans could be used to improve Integrated Pest Management
733 programs for these hemipterans. For example, recent studies have demonstrated that
734 different habitat-management strategies can distract ants from attending hemipterans
735 and reduce their aggressivity toward parasitoids. We suggest that the identification of
736 parasitoid traits that reduce the impact of trophobiotic ants should be used to select
737 parasitoid species in augmentative and classical biological control strategies. These
738 traits could also be considered in genetic breeding programs for parasitoids of phloem-
739 feeding hemipteran pests.

740

741 **VII. ACKNOWLEDGEMENTS**

742 This research was partially supported by the project IVIA-GVA 52202 funded by
743 Instituto Valenciano de Investigaciones Agrarias (this project is susceptible of being
744 cofinanced by the European Union through the ERDF Program 2021–2027 Comunitat

745 Valenciana). MFB received a postdoctoral fellowship from the MCIU (Juan de la Cierva
746 programme JDC2022-049286-I).

747 The authors declare no competing interests.

748

749 **VIII. REFERENCES**

750 References identified with an asterisk (*) are cited only within the online Supporting
751 Information.

752 AKINO, T. (2008). Chemical strategies to deal with ants: a review of mimicry,
753 camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and
754 other arthropods. *Myrmecological News* **11**(8), 173–181.

755 AKINO, T. & YAMAOKA, R. (1998). Chemical mimicry in the root aphid parasitoid
756 *Paralipsis eikoa* Yasumatsu (Hymenoptera: Aphidiidae) of the aphid-attending ant
757 *Lasius sakagamii* Yamauchi & Hayashida (Hymenoptera: Formicidae). *Chemoecology*
758 **8**, 153–161.

759 *BANKS, C. J. (1958). Effects of the ant, *Lasius niger* (L.), on the behaviour and
760 reproduction of the black bean aphid, *Aphis fabae* Scop. *Bulletin of Entomological*
761 *Research* **49**(4), 701–714.

762 *BANKS, C. J. (1962). Effects of the ant *Lasius niger* (L.) on insects preying on small
763 populations of *Aphis fabae* Scop. on bean plants. *Annals of Applied Biology* **50**(4), 669–
764 679.

765 BAQUI, M. A. & KERSHAW, W. J. S. (1993). Effect of plant age on host preference,
766 honeydew production and fecundity of *Nilaparvata lugens* (Stål)(Hom., Delphacidae)
767 on rice cultivars. *Journal of Applied Entomology* **116**(1-5), 133–138.

768 BARTON, B. T. & IVES, A. R. (2014). Direct and indirect effects of warming on aphids,
769 their predators, and ant mutualists. *Ecology* **95**(6), 1479–1484.

770 BARZMAN, M. S. & DAANE K. M. (2001). Host-handling behaviours in parasitoids of the
771 black scale: a case for ant-mediated evolution. *Journal of Animal Ecology*, **70**(2), 237–
772 247.

773 BELTRÁ, A., SOTO, A. & TENA, A. (2015). How a slow-ovipositing parasitoid can
774 succeed as a biological control agent of the invasive mealybug *Phenacoccus*
775 *peruvianus*: implications for future classical and conservation biological control
776 programs. *BioControl* **60**, 473–484.

777 BERTELSMEIER, C., LUQUE, G. M., HOFFMANN, B. D. & COURCHAMP, F. (2015).
778 Worldwide ant invasions under climate change. *Biodiversity and conservation* **24**, 117–
779 128.

780 BLAIMER, B. B., SANTOS, B. F., CRUAUD, A., GATES, M. W., KULA, R. R., MIKÓ, I., ... &
781 BUFFINGTON, M. L. (2023). Key innovations and the diversification of Hymenoptera.
782 *Nature Communications* **14**(1), 1212.

783 BLANCHARD, S., LOGNAY, G., VERHEGGEN, F. & DETRAIN, C. (2019). Today and
784 tomorrow: impact of climate change on aphid biology and potential consequences on
785 their mutualism with ants. *Physiological Entomology* **44**(2), 77–86.

786 BLUA, M. J. & TOSCANO, N. C. (1994). *Bemisia argentifolii* (Homoptera: Aleyrodidae)
787 development and honeydew production as a function of cotton nitrogen status.
788 *Environmental Entomology* **23**(2), 316–321.

789 BLUBAUGH, C. K., HUSS, C. P., LINDELL, H. C., SPANN, G. L. & BASINGER, N. T. (2024).
790 Cover crops dismantle keystone ant/aphid mutualisms to enhance insect pest
791 suppression and weed biocontrol. *Agricultural and Forest Entomology* **27**(2), 294–303.

792 BLUMBERG, D. & VAN DRIESCHE, R. G. (2001). Encapsulation rates of three encyrtid
793 parasitoids by three mealybug species (Homoptera: Pseudococcidae) found commonly
794 as pests in commercial greenhouses. *Biological Control* **22**(2), 191–199.

795 BLÜTHGEN, N. & FIEDLER, K. (2004). Competition for composition: Lessons from
796 nectar-feeding ant communities. *Ecology* **85**(6), 1479–1485.

797 BLÜTHGEN, N., E. STORK, N. & FIEDLER, K. (2004). Bottom-up control and co-
798 occurrence in complex communities: honeydew and nectar determine a rainforest ant
799 mosaic. *Oikos* **106**(2), 344–358.

800 BLÜTHGEN, N., VERHAAGH, M., GOITÍA, W., JAFFÉ, K., MORAWETZ, W. & BARTHLOTT,
801 W. (2000). How plants shape the ant community in the Amazonian rainforest canopy:
802 the key role of extrafloral nectaries and homopteran honeydew. *Oecologia* **125**, 229–
803 240.

804 BOIVIN, G., HANCE, T. & BRODEUR, J. (2012). Aphid parasitoids in biological control.
805 *Canadian Journal of Plant Science* **92**(1), 1–12.

806 BRETON, L. M. & ADDICOTT, J. F. (1992). Density-dependent mutualism in an aphid-ant
807 interaction. *Ecology* **73**(6), 2175–2180.

808 BUCKLEY, R. & GULLAN, P. (1991). More aggressive ant species (Hymenoptera:
809 Formicidae) provide better protection for soft scales and mealybugs (Homoptera:
810 Coccidae, Pseudococcidae). *Biotropica* **23**(3), 282–286.

811 CALVO-AGUDO, M., TOOKER, J. F., DICKE, M. & TENA, A. (2022). Insecticide-
812 contaminated honeydew: risks for beneficial insects. *Biological Reviews* **97**(2), 664–
813 678.

814 CHAN, M. S. & GODFRAY, H. C. J. (1993). Host-feeding strategies of parasitoid wasps.
815 *Evolutionary Ecology* **7**, 593–604.

816 CHINARELLI, H. D., PUPE, A. E. & LEAL, L. C. (2021). Peace, sweet peace: ants become
817 less aggressive when carbohydrates abound. *Ecological Entomology*, **46**(2), 273–282.

818 CHOE, D. H. & RUST, M. K. (2006). Homopteran chemical signatures reduce aggression
819 of tending ants. *Chemoecology* **16**, 175–178.

820 CLARK, R. E., GUTIERREZ ILLAN, J., COMERFORD, M. S. & SINGER, M. S. (2019).

821 Keystone mutualism influences forest tree growth at a landscape scale. *Ecology Letters*
822 **22**(10), 1599–1607.

823 CRUAUD, A., RASPLUS, J. Y., ZHANG, J., BURKS, R., DELVARE, G., FUSU, L., GUMOVSKY,
824 A., HUBER, J. T., JANŠTA, P., MITROIU, M., NOYES, J. S., VAN NOORT, S., BAKER, A.,
825 BÖHMOVÁ, J., BAUR, H., ET AL. (2024). The Chalcidoidea bush of life: evolutionary
826 history of a massive radiation of minute wasps. *Cladistics* **40**(1), 34–63.

827 *CUDJOE, A. R., NEUENSCHWANDER, P. & COPLAND, M. J. W. (1993). Interference by
828 ants in biological control of the cassava mealybug *Phenacoccus manihoti* (Hemiptera:
829 Pseudococcidae) in Ghana. *Bulletin of Entomological Research* **83**(1), 15–22.

830 CUSHMAN, J. H. & ADDICOTT, J. F. (1989). Intra-and interspecific competition for
831 mutualists: ants as a limited and limiting resource for aphids. *Oecologia* **79**, 315–321.

832 CUSHMAN, J. H. & WHITHAM, T. G. (1991). Competition mediating the outcome of a
833 mutualism: protective services of ants as a limiting resource for membracids. *The
834 American Naturalist* **138**(4), 851–865.

835 CZACZKES, T. J. & KUMAR, P. (2020). Very rapid multi-odour discrimination learning in
836 the ant *Lasius niger*. *Insectes Sociaux* **67**(4), 541–545.

837 DAANE, K. M., ALMEIDA, R. P., BELL, V. A., WALKER, J. T., BOTTON, M., FALLAHZADEH,
838 M., MANI, M., MIANO, J. L., SFORZA, R., WALTON, V. M. & ZAVIEZO, T. (2012). Biology
839 and management of mealybugs in vineyards. In *Arthropod management in vineyards:
840 Pests, approaches, and future directions*, 271–307. Springer, Dordrecht.

841 DAANE, K. M., SIME, K. R., FALLON, J. & COOPER, M. L. (2007). Impacts of Argentine
842 ants on mealybugs and their natural enemies in California's coastal vineyards.
843 *Ecological Entomology* **32**(6), 583–596.

844 DAVIDSON, D. W., COOK, S. C., SNELLING, R. R. & CHUA, T. H. (2003). Explaining the
845 abundance of ants in lowland tropical rainforest canopies. *Science* **300**(5621), 969–972.

846 DAVIDSON, D. W. & PATRELL-KIM, L. (1996). Tropical arboreal ants: why so abundant?.
847 In *Neotropical biodiversity and conservation*, 127–140. University of California, Los
848 Angeles

849 DEJEAN, A., NGNEGUEU, P. R. & BOURGOIN, T. (1996). Trophobiosis between ants and
850 *Peregrinus maidis* (Hemiptera, Fulgoromorpha, Delphacidae). *Sociobiology* **28**(1), 111–
851 120.

852 DELABIE, J. H. (2001). Trophobiosis between Formicidae and Hemiptera
853 (Sternorrhyncha and Auchenorrhyncha): an overview. *Neotropical Entomology* **30**, 501–
854 516.

855 *DEL-CLARO, K. & OLIVEIRA, P. S. (2000). Conditional outcomes in a neotropical
856 treehopper-ant association: temporal and species-specific variation in ant protection and
857 homopteran fecundity. *Oecologia* **124**(2), 156–165

858 DEL-CLARO, K., RICO-GRAY, V., TOREZAN-SILINGARDI, H. M., ALVES-SILVA, E.,
859 FAGUNDES, R., LANGE, D., DÁTTILO, W., VILELA, A. A., AGUIRRE, A. & RODRIGUEZ-
860 MORALES, D. (2016). Loss and gains in ant–plant interactions mediated by extrafloral
861 nectar: fidelity, cheats, and lies. *Insectes Sociaux* **63**, 207–221.

862 DEPA, Ł., KASZYCA-TASZAKOWSKA, N., TASZAKOWSKI, A. & KANTURSKI, M. (2020).
863 Ant-induced evolutionary patterns in aphids. *Biological Reviews* **95**(6), 1574–1589.

864 DESNEUX, N., BARTA, R. J., HOELMER, K. A., HOPPER, K. R. & HEIMPEL, G. E. (2009).
865 Multifaceted determinants of host specificity in an aphid parasitoid. *Oecologia* **160**,
866 387–398.

867 DETRAIN, C., VERHEGGEN, F. J., DIEZ, L., WATHELET, B. & HAUBRUGE, E. (2010).
868 Aphid–ant mutualism: how honeydew sugars influence the behaviour of ant scouts.
869 *Physiological Entomology* **35**(2), 168–174.
870 DHAMI, M. K., WEIR, B. S., TAYLOR, M. W. & BEGGS, J. R. (2013). Diverse honeydew-
871 consuming fungal communities associated with scale insects. *PLoS One* **8**(7), e70316.
872 DICKE, M. & GROSTAL, P. (2001). Chemical detection of natural enemies by arthropods:
873 an ecological perspective. *Annual Review of Ecology and Systematics* **32**(1), 1–23.
874 DIEHL, E., SEREDA, E., WOLTERS, V. & BIRKHOFER, K. (2013). Effects of predator
875 specialization, host plant and climate on biological control of aphids by natural enemies:
876 a meta-analysis. *Journal of Applied Ecology* **50**(1), 262–270.
877 DOROSHEVA, E. A., YAKOVLEV, I. K. & REZNIKOVA, Z. I. (2011). An innate template for
878 enemy recognition in red wood ants. *Entomological Review* **91**, 274–280.
879 DOUGLAS, A. E. (2009). Honeydew. *Encyclopedia of insects* (2nd Edition), 461–463.
880 Elsevier/Academic Press. Amsterdam, London, Burlington (MA), and San Diego.
881 DROHOJOWSKA, J., SZWEDO, J., ŹYŁA, D., HUANG, D. Y. & MÜLLER, P. (2020). Fossils
882 reshape the Sternorrhyncha evolutionary tree (Insecta, Hemiptera). *Scientific Reports*
883 **10**(1), 11390.
884 *EL-ZIADY, S. & KENNEDY, J. S. (1956). Beneficial effects of the common garden ant,
885 *Lasius niger* L., on the black bean aphid, *Aphis fabae* Scopoli. *Proceedings of the Royal*
886 *Entomological Society of London* **31**(4-6), 61–65.
887 EMDEN, H. V. & HARRINGTON, R. (Eds.). (2017). *Aphids as crop pests*. Cabi.
888 ENDO, S. & ITINO, T. (2012). The aphid-tending ant *Lasius fuji* exhibits reduced
889 aggression toward aphids marked with ant cuticular hydrocarbons. *Population ecology*
890 **54**, 405–410

891 ENDO, S. & ITINO, T. (2013). Myrmecophilous aphids produce cuticular hydrocarbons
892 that resemble those of their tending ants. *Population Ecology* **55**, 2734.

893 ENGEL, V., FISCHER, M. K., WÄCKERS, F. L. & VÖLKL, W. (2001). Interactions between
894 extrafloral nectaries, aphids and ants: are there competition effects between plant and
895 homopteran sugar sources? *Oecologia* **129**, 577–584.

896 FANANI, M. Z., RAUF, A., MARYANA, N., NURMANSYAH, A. & HINDAYANA, D. (2020).
897 Parasitism disruption by ants of *Anagyrus lopezi* (Hymenoptera: Encyrtidae), parasitoid
898 of cassava mealybug. *Biodiversitas Journal of Biological Diversity* **21**(6), 2337–2343

899 FENG, D. D., MICHAUD, J. P., LI, P., ZHOU, Z. S. & XU, Z. F. (2015). The native ant,
900 *Tapinoma melanocephalum*, improves the survival of an invasive mealybug,
901 *Phenacoccus solenopsis*, by defending it from parasitoids. *Scientific Reports* **5**(1),
902 15691.

903 FERNÁNDEZ DE BOBADILLA, M., RAMÍREZ, N. M., CALVO-AGUDO, M., DICKE, M. &
904 TENA, A. (2024). Honeydew management to promote biological control. *Current
905 Opinion in Insect Science* **61**, 101151.

906 FISCHER, M. K. & SHINGLETON, A. W. (2001). Host plant and ants influence the
907 honeydew sugar composition of aphids. *Functional Ecology* **15**(4), 544–550.

908 FISCHER, M. K., VÖLKL, W. & HOFFMANN, K. H. (2005). Honeydew production and
909 honeydew sugar composition of polyphagous black bean aphid, *Aphis fabae*
910 (Hemiptera: Aphididae) on various host plants and implications for ant-attendance.
911 *European Journal of Entomology* **102**(2), 155–160.

912 FORONDA, J., BERVILLE, L., RODRÍGUEZ, E., PEÑA, A., PERDEREAU, E., MONTORO, M.,
913 LUCAS, C. & RUANO, F. (2025). Chemical Recognition Cues in Ant-Aphid Mutualism:
914 Differentiating, Sharing, and Modifying Cuticular Components. *Journal of Chemical
915 Ecology* **51**(3), 1–13.

916 GIUNTI, G., CANALE, A., MESSING, R. H., DONATI, E., STEFANINI, C., MICHAUD, J. P. &
917 BENELLI, G. (2015). Parasitoid learning: current knowledge and implications for
918 biological control. *Biological Control* **90**, 208–219.

919 GODFRAY, H. C. J. & MÜLLER, C. B. (1998). Host-parasitoid dynamics. In *Insect*
920 *Populations In theory and in practice: 19th Symposium of the Royal Entomological*
921 *Society 10–11 September 1997 at the University of Newcastle*, 135–165. Springer,
922 Dordrecht.

923 GULLAN, P. J. & MARTIN, J. H. (2009). Sternorrhyncha:(jumping plant-lice, whiteflies,
924 aphids, and scale insects). In *Encyclopedia of insects* (2nd Edition), 957–967.
925 Elsevier/Academic Press. Amsterdam, London, Burlington (MA), and San Diego.

926 HARDY, N. B. (2018). The biodiversity of Sternorrhyncha: scale insects, aphids,
927 psyllids, and whiteflies. In *Insect biodiversity: science and society* (2nd Edition), 591–
928 625. Wiley-Blackwell, Hoboken.

929 HARMON, P. J. & ANDOW, D. A. (2007). Behavioral mechanisms underlying ants'
930 density-dependent deterrence of aphid-eating predators. *Oikos* **116**(6), 1030–1036.

931 HAYASHI, M., NAKAMUTA, K., & NOMURA, M. (2015). Ants learn aphid species as
932 mutualistic partners: is the learning behavior species-specific?. *Journal of Chemical*
933 *Ecology* **41**(12), 1148–1154.

934 HEIL, M. (2015). Extrafloral nectar at the plant-insect interface: a spotlight on chemical
935 ecology, phenotypic plasticity, and food webs. *Annual Review of Entomology* **60**(1),
936 213–232.

937 HEIMPEL, G. E., ROSENHEIM, J. A. & MANGEL, M. (1997). Predation on adult *Aphytis*
938 parasitoids in the field. *Oecologia* **110**, 346–352.

939 HERBERT, J. J. & HORN, D. J. (2008). Effect of ant attendance by *Monomorium minimum*
940 (Buckley) (Hymenoptera: Formicidae) on predation and parasitism of the soybean aphid

941 *Aphis glycines* Matsumura (Hemiptera: Aphididae). *Environmental Entomology* **37**(5),
942 1258–1263.

943 HERTAEG, C., RISSE, M., VORBURGER, C., DE MORAES, C. M. & MESCHER, M. C. (2021).
944 Aphids harbouring different endosymbionts exhibit differences in cuticular hydrocarbon
945 profiles that can be recognized by ant mutualists. *Scientific Reports* **11**(1), 19559.

946 HERTAEG, C., VORBURGER, C., DE MORAES, C. M. & MESCHER, M. C. (2023). Effects of
947 genotype and host environment on the cuticular hydrocarbon profiles of *Lysiphlebus*
948 parasitoids and aggression by aphid-tending ants. *Proceedings of the Royal Society B*
949 **290**(2009), 20231642.

950 HIROSE, Y. (2006). Biological control of aphids and coccids: a comparative analysis.
951 *Population Ecology* **48**, 307–315.

952 Ho, C. T. & KHOO, K. C. (1997). Partners in biological control of cocoa pests:
953 mutualism between *Dolichoderus thoracicus* (Hymenoptera: Formicidae) and
954 *Cataenococcus hispidus* (Hemiptera: Pseudococcidae). *Bulletin of Entomological*
955 *Research* **87**(5), 461–470.

956 HOGERVORST, P. A., WÄCKERS, F. L. & ROMEIS, J. (2007). Effects of honeydew sugar
957 composition on the longevity of *Aphidius ervi*. *Entomologia Experimentalis et*
958 *Applicata* **122**(3), 223–232.

959 HOJO, M. K., YAMAMOTO, A., AKINO, T., TSUJI, K. & YAMAOKA, R. (2014). Ants use
960 partner specific odors to learn to recognize a mutualistic partner. *PLoS One* **9**(1),
961 e86054.

962 HÖLLOBLER, B. & WILSON, E. O. (1990). *The ants*. Harvard University Press,
963 Cambridge.

964 HOLLIS, K. L., MCNEW, K., SOSA, T., HARRSCH, F. A., & NOWBAHARI, E. (2017). Natural
965 aversive learning in *Tetramorium* ants reveals ability to form a generalizable memory of
966 predators' pit traps. *Behavioural Processes* **139**, 19–25.

967 HUANG, J., ZHANG, P. J., ZHANG, J. & TANG, Y. Y. (2017). An ant-coccid mutualism
968 affects the behaviour of the parasitoid *Aenasius bambawalei*, but not that of the ghost
969 ant *Tetramorium bicarinatum*. *Scientific Reports* **7**(1), 5175.

970 HUBER, R. & KNADEN, M. (2018). Desert ants possess distinct memories for food and
971 nest odors. *Proceedings of the National Academy of Sciences* **115**(41), 10470–10474.

972 HÜBNER, G. (2000). Differential interactions between an aphid endohyperparasitoid and
973 three honeydew-collecting ant species: a field study of *Alloxysta brevis* (Thomson)
974 (Hymenoptera: Alloxystidae). *Journal of Insect Behavior* **13**, 771–784.

975 HÜBNER, G. & DETTNER, K. (2000). Hyperparasitoid defense strategies against spiders:
976 the role of chemical and morphological protection. *Entomologia Experimentalis et
977 Applicata* **97**(1), 67–74.

978 HÜBNER, G. & VÖLKL, W. (1996). Behavioural strategies of aphid hyperparasitoids to
979 escape aggression by honeydew-collecting ants. *Journal of Insect Behaviour* **9**, 143–
980 157.

981 HÜBNER, G., VÖLKL, W., FRANCKE, W. & DETTNER, K. (2002). Mandibular gland
982 secretions in alloxystine wasps (Hymenoptera, Cynipoidea, Charipidae): do ecological
983 or phylogenetical constraints influence occurrence or composition?. *Biochemical
984 Systematics and Ecology* **30**(6), 505–523.

985 ITIOKA, T. & INOUE, T. (1996). Density-dependent ant attendance and its effects on the
986 parasitism of a honeydew-producing scale insect, *Ceroplastes rubens*. *Oecologia* **106**,
987 448–454.

988 JACKSON, D. E. & RATNIEKS, F. L. (2006). Communication in ants. *Current Biology*,
989 **16**(15), R570-R574.

990 JAMONT, M., CRÉPELLIÈRE, S., & JALOUX, B. (2013). Effect of extrafloral nectar
991 provisioning on the performance of the adult parasitoid *Diaeretiella rapae*. *Biological
992 Control* **65**(2), 271-277.

993 JOUAULT, C., OYAMA, N., ÁLVAREZ-PARRA, S., HUANG, D., PERRICHOT, V., CONDAMINE,
994 F. L. & LEGENDRE, F. (2025). The radiation of Hymenoptera illuminated by Bayesian
995 inferences from the fossil record. *Current Biology* **35**(9), 2164–2174.

996 KANEKO, S. (2002). Aphid-attending ants increase the number of emerging adults of the
997 aphid's primary parasitoid and hyperparasitoids by repelling intraguild predators.
998 *Entomological Science* **5**(2), 131–146

999 KANEKO, S. (2003a). Different impacts of two species of aphid-attending ants with
1000 different aggressiveness on the number of emerging adults of the aphid's primary
1001 parasitoid and hyperparasitoids. *Ecological Research*, **18**(2), 199–212.

1002 KANEKO, S. (2003b). Impacts of two ants, *Lasius niger* and *Pristomyrmex pungens*
1003 (Hymenoptera: Formicidae), attending the brown citrus aphid, *Toxoptera citricidus*
1004 (Homoptera: Aphididae), on the parasitism of the aphid by the primary parasitoid,
1005 *Lysiphlebus japonicus* (Hymenoptera: Aphidiidae), and its larval survival. *Applied
1006 Entomology and Zoology* **38**(3), 347–357.

1007 KANEKO, S. (2007). Predator and parasitoid attacking ant-attended aphids: effects of
1008 predator presence and attending ant species on emerging parasitoid numbers. *Ecological
1009 Research* **22**(3), 451–458.

1010 KAPRANAS, A. & TENA, A. (2015). Encyrtid parasitoids of soft scale insects: Biology,
1011 behaviour, and their use in biological control. *Annual Review of Entomology* **60**(1),
1012 195–211.

1013 KATAYAMA, N. & SUZUKI, N. (2002). Cost and benefit of ant attendance for *Aphis*
1014 (*Hemiptera: Aphididae*) with reference to aphid colony size. *The Canadian*
1015 *Entomologist* **134**(2), 241–249.

1016 KATAYAMA, N., TSUCHIDA, T., HOJO, M. K. & OHGUSHI, T. (2013). Aphid genotype
1017 determines intensity of ant attendance: do endosymbionts and honeydew composition
1018 matter? *Annals of the Entomological Society of America* **106**(6), 761–770.

1019 KELLY, S. E., MOORE, W., HALL, W. E. & HUNTER, M. S. (2022). Hiding in plain sight:
1020 Cryptic enemies are found on cochineal (*Hemiptera: Dactylopiidae*), a scale insect of
1021 economic and cultural significance. *Ecology and Evolution* **12**(8), e9151.

1022 KISTNER, E. J., LEWIS, M., CARPENTER, E., MELHEM, N., HODDLE, C., STRODE, V.,
1023 OLIVA, J., CASTILLO, M. & HODDLE, M. S. (2017). Digital video surveillance of natural
1024 enemy activity on *Diaphorina citri* (*Hemiptera: Liviidae*) colonies infesting citrus in the
1025 southern California urban landscape. *Biological Control* **115**, 141–151.

1026 KONDO, T. & WATSON, G. W. (Eds.). (2022). *Encyclopedia of scale insect pests*. CABI,
1027 Wallingford.

1028 KULIKOWSKI, A. J. (2020). Ant–scale mutualism increases scale infestation, decreases
1029 folivory, and disrupts biological control in restored tropical forests. *Biotropica* **52**(4),
1030 709–716.

1031 LABANDEIRA, C. C. & LI, L. (2021). The history of insect parasitism and the Mid-
1032 Mesozoic Parasitoid Revolution. In *The Evolution and Fossil Record of Parasitism:*
1033 *Identification and Macroevolution of Parasites*, 377–533. Springer International
1034 Publishing.

1035 LANDIS, D. A., WRATTEN, S. D. & GURR, G. M. (2000). Habitat management to conserve
1036 natural enemies of arthropod pests in agriculture. *Annual Review of Entomology* **45**(1),
1037 175–201.

1038 LE RALEC, A., ANSELME, C., OUTREMAN, Y., POIRIÉ, M., VAN BAAREN, J., LE LANN, C.
1039 & JACQUES, J. M. (2010). Evolutionary ecology of the interactions between aphids and
1040 their parasitoids. *Comptes Rendus Biologies* **333**(6-7), 554–565.

1041 LIEBOLD, A. M., TURNER, R. M., BARTLETT, C. R., BERTELSMEIER, C., BLAKE, R. E.,
1042 BROCKERHOFF, E. G., CAUSTON, C. C., MATSUNAGA, J. N., MCKAMEY, S. H., NAHRUNG,
1043 H. F., OWEN, C. L., PURESWARAN, D. S., ROQUES, A., SCHNEIDER, S. A., SANBORN A. F.
1044 & YAMANAKA, T. (2024). Why so many Hemiptera invasions? *Diversity and*
1045 *Distributions* **30**(12), e13911.

1046 LIEPERT, C. & DETTNER, K. (1993). Recognition of aphid parasitoids by honeydew-
1047 collecting ants: the role of cuticular lipids in a chemical mimicry system. *Journal of*
1048 *Chemical Ecology* **19**, 2143–2153.

1049 LIEPERT, C. & DETTNER, K. (1996). Role of cuticular hydrocarbons of aphid parasitoids
1050 in their relationship to aphid-attending ants. *Journal of Chemical Ecology* **22**, 695–707.

1051 MACKAUER, M. & VÖLKL, W. (1993). Regulation of aphid populations by aphidiid
1052 wasps: does parasitoid foraging behaviour or hyperparasitism limit impact? *Oecologia*
1053 **94**, 339–350.

1054 MACKAUER, M. & VÖLKL, W. (2002). Brood-size and sex-ratio variation in field
1055 populations of three species of solitary aphid parasitoids (Hymenoptera: Braconidae,
1056 Aphidiinae). *Oecologia* **131**, 296–305.

1057 MAJERUS, M. E., SLOGGETT, J. J., GODEAU, J. F. & HEMPTINNE, J. L. (2007). Interactions
1058 between ants and aphidophagous and coccidophagous ladybirds. *Population Ecology*
1059 **49**, 15–27.

1060 MALCICKA, M., BEZEMER, T. M., VISSER, B., BLOEMBERG, M., SNART, C. J., HARDY, I.
1061 & HARVEY, J. A. (2015). Multi-trait mimicry of ants by a parasitoid wasp. *Scientific*
1062 *Reports* **5**(1), 8043.

1063 MANDRIOLI, M., BISANTI, M., GRASSO, D. A. & MANICARDI, G. C. (2016). Role of ant-
1064 tending in modulating the presence of symbiotic bacteria against parasitoids in aphids.
1065 *Trends in Entomology* **12**, 63–71.

1066 *MANSOUR, R., SUMA, P., MAZZEO, G., LA PERGOLA, A., PAPPALARDO, V., GRISSA
1067 LEBDI, K. & RUSSO, A. (2012). Interactions between the ant *Tapinoma nigerrimum*
1068 (Hymenoptera: Formicidae) and the main natural enemies of the vine and citrus
1069 mealybugs (Hemiptera: Pseudococcidae). *Biocontrol Science and Technology* **22**(5),
1070 527–537.

1071 MARTINEZ-FERRER, M. T., GRAFTON-CARDWELL, E. E. & SHOREY, H. H. (2003).
1072 Disruption of parasitism of the California red scale (Homoptera: Diaspididae) by three
1073 ant species (Hymenoptera: Formicidae). *Biological Control*, **26**(3), 279–286.

1074 *MASON, A. C. (1922). Life history studies of some Florida aphids. *The Florida
1075 Entomologist* **5**(4), 53–65.

1076 MATSUURA, T., HANNA, C., TAKAHASHI, S., & ITINO, T. (2025). Predation by *Lasius* ants
1077 on the obligate ant-symbiotic aphid *Stomaphis japonica* with special reference to the
1078 aphid honeydew delivery. *Journal of Natural History* **59**(9-12), 557–571.

1079 MCIVER, J. D. & STONEDAHL, G. M. (1993). Myrmecomorphy: morphological and
1080 behavioural mimicry of ants. *Annual Review of Entomology* **38**, 351–379.

1081 MEURVILLE, M. P. & LEBOEUF, A. C. (2021). Trophallaxis: the functions and evolution
1082 of social fluid exchange in ant colonies (Hymenoptera: Formicidae). *Myrmecological
1083 News* **31**, 1–30

1084 *MGOCHEKI, N. & ADDISON, P. (2009). Interference of ants (Hymenoptera: Formicidae)
1085 with biological control of the vine mealybug *Planococcus ficus* (Signoret)(Hemiptera:
1086 Pseudococcidae). *Biological Control* **49**(2), 180–185.

1087 MILLS, N. (2009). Parasitoids. In *Encyclopedia of insects* (2nd Edition), 748–751.

1088 Elsevier/Academic Press. Amsterdam, London, Burlington (MA), and San Diego.

1089 MILOSAVLJEVIĆ, I., MORGAN, D. J., MASSIE, R. E. & HODDLE, M. S. (2021). Density

1090 dependent mortality, climate, and Argentine ants affect population dynamics of an

1091 invasive citrus pest, *Diaphorina citri*, and its specialist parasitoid, *Tamarixia radiata*, in

1092 Southern California, USA. *Biological Control* **159**, 104627.

1093 MOONEY, E., DAVIDSON, B., DEN UYL, J., MULLINS, M., MEDINA, E., NGUYEN, P. &

1094 OWENS, J. (2019). Elevated temperatures alter an ant-aphid mutualism. *Entomologia*

1095 *Experimentalis et Applicata* **167**(10), 891–905.

1096 MOONEY, K. A. & TILLBERG, C. V. (2005). Temporal and spatial variation to ant

1097 omnivory in pine forests. *Ecology* **86**(5), 1225–1235.

1098 MOREAU, C. S., BELL, C. D., VILA, R., ARCHIBALD, S. B. & PIERCE, N. E. (2006).

1099 Phylogeny of the ants: diversification in the age of angiosperms. *Science* **312**(5770),

1100 101–104.

1101 MOURATIDIS, A., VACAS, S., HERRERO, J., NAVARRO-LLOPIS, V., DICKE, M. & TENA, A.

1102 (2021). Parasitic wasps avoid ant-protected hemipteran hosts via the detection of ant

1103 cuticular hydrocarbons. *Proceedings of the Royal Society B* **288**(1942), 20201684.

1104 *NAVARRETE, B., MCAUSLANE, H., DEYRUP, M. & PEÑA, J. E. (2013). Ants

1105 (Hymenoptera: Formicidae) associated with *Diaphorina citri* (Hemiptera: Liviidae) and

1106 their role in its biological control. *Florida Entomologist* **96**(2), 590–597.

1107 NEL, A., ROQUES, P., NEL, P., PROKIN, A. A., BOURGOIN, T., PROKOP, J., SZWEDO, J.,

1108 AZAR, D., DESUTTER-GRANDCOLAS, L., WAPPLER, T., GARROUSTE, R., COTY, D.,

1109 HUANG, D., ENGEL, M. S. & KIREJTSUK, A. G. (2013). The earliest known

1110 holometabolous insects. *Nature* **503**(7475), 257–261.

1111 NELSEN, M. P., REE, R. H. & MOREAU, C. S. (2018). Ant-plant interactions evolved
1112 through increasing interdependence. *Proceedings of the National Academy of Sciences*
1113 **115**(48), 12253–12258.

1114 NELSON, A. S. & MOONEY, K. A. (2022). The evolution and ecology of interactions
1115 between ants and honeydew-producing hemipteran insects. *Annual Review of Ecology,*
1116 *Evolution, and Systematics* **53**(1), 379–402.

1117 NELSON, A. S., PRATT, R. T., PRATT, J. D., SMITH, R. A., SYMANSKI, C. T., PRENOT, C. &
1118 MOONEY, K. A. (2019). Progressive sensitivity of trophic levels to warming underlies an
1119 elevational gradient in ant-aphid mutualism strength. *Oikos* **128**(4), 540–550.

1120 NESS, J., MOONEY, K. & LACH, L. (2010). Ants as mutualists. In *Ant Ecology* 97–114.
1121 Oxford University Press, Oxford.

1122 NIELSEN, C., AGRAWAL, A. A. & HAJEK, A. E. (2010). Ants defend aphids against lethal
1123 disease. *Biology Letters* **6**(2), 205–208.

1124 NOVAK, H. (1994). The influence of ant attendance on larval parasitism in hawthorn
1125 psyllids (Homoptera: Psyllidae). *Oecologia* **99**, 72–78.

1126 NOVGORODOVA, T. A. (2015). Interaction of ants with aphid enemies: Do inexperienced
1127 ants specializing in honeydew collection recognize aphidophages at their first contact?
1128 *Entomological Review* **95**, 1182–1190.

1129 NYABUGA, F. N., VÖLKL, W., SCHWÖRER, U., WEISSE, W. W. & MACKAUER, M. (2012).
1130 Mating strategies in solitary aphid parasitoids: effect of patch residence time and ant
1131 attendance. *Journal of Insect Behaviour* **25**, 80–95.

1132 OFFENBERG, J. (2001). Balancing between mutualism and exploitation: the symbiotic
1133 interaction between *Lasius* ants and aphids. *Behavioural Ecology and Sociobiology* **49**,
1134 304–310.

1135 OLIVER, K. M., DEGNAN, P. H., BURKE, G. R. & MORAN, N. A. (2010). Facultative
1136 symbionts in aphids and the horizontal transfer of ecologically important traits. *Annual*
1137 *review of entomology* **55**(1), 247–266.

1138 OLIVER, T. H., LEATHER, S. R. & COOK, J. M. (2008). Macroevolutionary patterns in the
1139 origin of mutualisms involving ants. *Journal of Evolutionary Biology* **21**(6), 1597–1608.

1140 PARIS, C. I., LLUSIA, J. & PEÑUELAS, J. (2010). Changes in monoterpane emission rates
1141 of *Quercus ilex* infested by aphids tended by native or invasive *Lasius* ant species.
1142 *Journal of Chemical Ecology* **36**(7), 689–698.

1143 PARKER, J. & KRONAUER, D. J. (2021). How ants shape biodiversity. *Current Biology*
1144 **31**(19), R1208–R1214.

1145 *PARRILLI, M., PROFETA, M., CASOLI, L., GAMBIRASIO, F., MASETTI, A. & BURGIO, G.
1146 (2021). Use of sugar dispensers to disrupt ant attendance and improve biological control
1147 of mealybugs in vineyard. *Insects* **12**(4), 330.

1148 PATTERSON, E. S., SANDERSON, R. A. & EYRE, M. D. (2019). Soil tillage reduces
1149 arthropod biodiversity and has lag effects within organic and conventional crop
1150 rotations. *Journal of Applied Entomology* **143**(4), 430–440.

1151 PEKAS, A., TENA, A., AGUILAR, A., & GARCIA-MARÍ, F. (2011). Spatio-temporal patterns
1152 and interactions with honeydew-producing Hemiptera of ants in a Mediterranean citrus
1153 orchard. *Agricultural and Forest Entomology* **13**(1), 89.

1154 PÉREZ-RODRÍGUEZ, J., PEKAS, A., TENA, A. & WÄCKERS, F. L. (2021). Sugar
1155 provisioning for ants enhances biological control of mealybugs in citrus. *Biological*
1156 *Control* **157**, 104573.

1157 PETERS, R. S., KROGMANN, L., MAYER, C., DONATH, A., GUNKEL, S., MEUSEMANN, K.,
1158 KOZLOV, A., PODSIADLOWSKI, L., PETERSEN, M., LANFEAR, R., DIEZ, P. A., HERATY, J.,

1159 KJER, K. M., KLOPFSTEIN, S., MEIER, R. ET AL. (2017). Evolutionary history of the
1160 Hymenoptera. *Current Biology* **27**(7), 1013–1018.

1161 PICKETT, J. A. & KHAN, Z. R. (2016). Plant volatile-mediated signalling and its
1162 application in agriculture: successes and challenges. *New Phytologist* **212**(4), 856–870.

1163 PLATA, Á., GÓMEZ-MARTÍNEZ, M. A., BEITIA, F. J. & TENA, A. (2024a). Exclusion of
1164 ground-nesting ants promotes biological control, but facilitates the establishment of an
1165 exotic canopy-nesting ant species. *Agriculture, Ecosystems & Environment* **375**,
1166 109165.

1167 PLATA, Á., GÓMEZ-MARTÍNEZ, M. A., BEITIA, F. J. & TENA, A. (2024b). Native ants
1168 facilitate the invasion by *Deltooccoccus aberiae* in Mediterranean citrus. *Journal of Pest
1169 Science* **97**(1), 255–267.

1170 PLATA, Á., GÓMEZ-MARTÍNEZ, M. A., BEITIA, F. J. & TENA, A. (2025). New crop, new
1171 pest, old ants: Crop colonisation by native ants disrupt biological control of an invasive
1172 mealybug in Mediterranean persimmon. *Ecological Entomology* **50**(1), 187–200.

1173 PLATA, Á., ZÜST, T., BERMEJO, A., BEITIA, F. J. & TENA, A. (2024c). Exotic predators
1174 can sequester and use novel toxins from exotic non-coevolved prey. *Proceedings of the
1175 Royal Society B* **291**(2018), 20232478.

1176 *PONTIN, A. J. (1960). Some records of predators and parasites adapted to attack aphids
1177 attended by ants. *The Entomologist's Monthly Magazine* **95**, 154–155.

1178 POWELL, B. E. & SILVERMAN, J. (2010). Impact of *Linepithema humile* and *Tapinoma
1179 sessile* (Hymenoptera: Formicidae) on three natural enemies of *Aphis gossypii*
1180 (Hemiptera: Aphididae). *Biological Control*, **54**(3), 285–291.

1181 PRINGLE, E. G. (2021). Ant-Hemiptera associations. In *Encyclopedia of social insects*,
1182 45–48. Springer, New York.

1183 PRINGLE, E. G., NOVO, A., ABLESON, I., BARBEHENN, R. V. & VANNETTE, R. L. (2014).
1184 Plant-derived differences in the composition of aphid honeydew and their effects on
1185 colonies of aphid-tending ants. *Ecology and Evolution* **4**(21), 4065–4079.
1186 QUEIROZ, J. M. & OLIVEIRA, P. S. (2001). Tending ants protect honeydew-producing
1187 whiteflies (Homoptera: Aleyrodidae). *Environmental Entomology* **30**(2), 295–297.
1188 RASEKH, A., MICHAUD, J. P., KHARAZI-PAKDEL, A. & ALLAHYARI, H. (2010). Ant
1189 mimicry by an aphid parasitoid, *Lysiphlebus fabarum*. *Journal of Insect Science* **10**(1),
1190 126.
1191 *REIMER, N. J., COPE, M. L. & YASUDA, G. (1993). Interference of *Pheidole*
1192 *megacephala* (Hymenoptera: Formicidae) with biological control of *Coccus viridis*
1193 (Homoptera: Coccidae) in coffee. *Environmental Entomology* **22**(2), 483–488.
1194 ROCHA, E. A. & FELLOWES, M. D. (2020). Urbanisation alters ecological interactions:
1195 Ant mutualists increase and specialist insect predators decrease on an urban gradient.
1196 *Scientific Reports* **10**(1), 6406.
1197 *SADEGHI-NAMAGHI, H. & AMIRI-JAMI, A. (2018). Success of aphid parasitoids and
1198 their hosts varies with ant attendance: A field study. *Entomological Science* **21**(4), 406–
1199 411.
1200 SAKATA, H. (1994). How an ant decides to prey on or to attend aphids. *Researches on*
1201 *Population Ecology* **36**, 45–51.
1202 SALAZAR, A., FÜRSTENAU, B., QUERO, C., PÉREZ-HIDALGO, N., CARAZO, P., FONT, E., &
1203 MARTÍNEZ-TORRES, D. (2015). Aggressive mimicry coexists with mutualism in an
1204 aphid. *Proceedings of the National Academy of Sciences* **112**(4), 1101–1106.
1205 SCHIFANI, E., GIANNETTI, D. & GRASSO, D. A. (2024). Toward sustainable management
1206 of ant-hemipteran mutualism in agricultural settings: a comparison of different
1207 approaches. *Crop Protection* **175**, 106468.

1208 SCHILLEWAERT, S., PARMENTIER, T., VANTAU, A., VAN DEN ENDE, W., VORBURGER, C.
1209 & WENSELEERS, T. (2017). The influence of facultative endosymbionts on honeydew
1210 carbohydrate and amino acid composition of the black bean aphid *Aphis fabae*.
1211 *Physiological Entomology* **42**(2), 125–133.

1212 SHARLEY, D. J., HOFFMANN, A. A. & THOMSON, L. J. (2008). The effects of soil tillage
1213 on beneficial invertebrates within the vineyard. *Agricultural & Forest Entomology*,
1214 **10**(3), 233–243.

1215 SIME, K. R. & DAANE, K. M. (2014). A comparison of two parasitoids (Hymenoptera:
1216 Encyrtidae) of the vine mealybug: rapid, non-discriminatory oviposition is favored
1217 when ants tend the host. *Environmental Entomology* **43**(4), 995–1002.

1218 SMITH, J. R. & SCHMITZ, O. J. (2016). Cascading ecological effects of landscape
1219 moderated arthropod diversity. *Oikos* **125**(9), 1261–1272.

1220 STADLER, B. & DIXON, A. F. (1998). Costs of ant attendance for aphids. *Journal of*
1221 *Animal Ecology* **67**(3), 454–459.

1222 STADLER, B. & DIXON, A. F. (1999). Ant attendance in aphids: why different degrees of
1223 myrmecophily? *Ecological Entomology* **24**(3), 363–369.

1224 STADLER, B. & DIXON, A. F. (2005). Ecology and evolution of aphid-ant interactions.
1225 Annu. *Annual Review of Ecology, Evolution, and Systematics* **36**(1), 345–372.

1226 STARY, P. (1966). Aphid parasites (Hym., Aphidiidae) and their relationship to aphid
1227 attending ants, with respect to biological control. *Insectes Sociaux* **13**(3), 185–202.

1228 STECHMANN, D. H., VÖLKL, W. & STARÝ, P. (1996). Ant-attendance as a critical factor in
1229 the biological control of the banana aphid *Pentalonia nigronervosa* Coq.(Hom.
1230 Aphididae) in Oceania. *Journal of Applied Entomology* **120**(1-5), 119–123.

1231 STÖKL, J., HOFFERBERTH, J., PRITSCHET, M., BRUMMER, M. & RUTHER, J. (2012).
1232 Stereoselective chemical defense in the Drosophila parasitoid *Leptopilina heterotoma* is

1233 mediated by (−)-iridomyrmecin and (+)-isoiridomyrmecin. *Journal of Chemical*
1234 *Ecology* **38**, 331–339.

1235 STUTZ, S. & ENTLING, M. H. (2011). Effects of the landscape context on aphid-ant-
1236 predator interactions on cherry trees. *Biological Control* **57**(1), 37–43.

1237 STYRSKY, J. D. & EUBANKS, M. D. (2007). Ecological consequences of interactions
1238 between ants and honeydew-producing insects. *Proceedings of the Royal Society B:*
1239 *Biological Sciences* **274**(1607), 151–164.

1240 SZWEDO, J. (2016). The unity, diversity and conformity of bugs (Hemiptera) through
1241 time. *Earth and Environmental Science Transactions of the Royal Society of Edinburgh*
1242 **107**(2-3), 109–128.

1243 TAKADA, H. (1983). Redescription and biological notes on *Protaaphidius nawaii*
1244 (Ashmead) (Hymenoptera, Aphidiidae). *Kontyu* **51**(1), 112–121.

1245 TAKADA, H. & HASHIMOTO, Y. (1985). Association of the root aphid parasitoids *Aclitus*
1246 *sappaphis* and *Paralipsis eikoae* (Hymenoptera, Aphidiidae) with the aphid-attending
1247 ants *Pheidole fervida* and *Lasius niger* (Hymenoptera, Formicidae). *Kontyu* **53**(1), 150–
1248 160.

1249 TANGA, C. M., EKESI, S., GOVENDER, P., NDERITU, P. W. & MOHAMED, S. A. (2015).
1250 Antagonistic interactions between the African weaver ant *Oecophylla longinoda* and the
1251 parasitoid *Anagyrus pseudococci* potentially limits suppression of the invasive
1252 mealybug *Rastrococcus iceryoides*. *Insects* **7**(1), 1.

1253 TEDER, T. & KNAPP, M. (2019). Sublethal effects enhance detrimental impact of
1254 insecticides on non-target organisms: A quantitative synthesis in parasitoids.
1255 *Chemosphere* **214**, 371–378.

1256 TENA, A., BOUVET, J. P. R. & ABRAM, P. K. (2022). Resting ecology of parasitoids in the
1257 field: safe in a bed and breakfast? *Animal Behaviour* **190**, 11–21.

1258 TENA, A., HODDLE, C. D. & HODDLE, M. S. (2013a). Competition between honeydew
1259 producers in an ant–hemipteran interaction may enhance biological control of an
1260 invasive pest. *Bulletin of Entomological Research* **103**(6), 714–723.

1261 TENA, A., LLÁCER, E., & URBANEJA, A. (2013b). Biological control of a non-honeydew
1262 producer mediated by a distinct hierarchy of honeydew quality. *Biological Control*,
1263 **67**(2), 117–122.

1264 TENA, A., NIEVES, E., HERRERO, J. & URBANEJA, A. (2018a). Defensive behaviours of
1265 the new mealybug citrus pest, *Delotococcus aberiae* (Hemiptera: Pseudococcidae),
1266 against three generalist parasitoids. *Journal of Economic Entomology*, **111**(1), 89–95.

1267 TENA, A., SENFT, M., DESNEUX, N., DREGNI, J. & HEIMPEL, G. E. (2018b). The influence
1268 of aphid-produced honeydew on parasitoid fitness and nutritional state: A comparative
1269 study. *Basic and Applied Ecology*, **29**, 55–68.

1270 TENA, A., STOUTHAMER, R. & HODDLE, M. S. (2017). Effect of host deprivation on the
1271 foraging behaviour of the Asian citrus psyllid parasitoid *Tamarixia radiata*:
1272 observations from the laboratory and the field. *Entomologia Experimentalis et
1273 Applicata*, **163**(1), 51–59.

1274 TENA, A., WÄCKERS, F. L., HEIMPEL, G. E., URBANEJA, A. & PEKAS, A. (2016).
1275 Parasitoid nutritional ecology in a community context: the importance of honeydew and
1276 implications for biological control. *Current Opinion in Insect Science*, **14**, 100–104.

1277 TURLINGS, T. C. & ERB, M. (2018). Tritrophic interactions mediated by herbivore-
1278 induced plant volatiles: mechanisms, ecological relevance, and application potential.
1279 *Annual Review of Entomology*, **63**(1), 433–452.

1280 URBANEJA-BERNAT, P., RODRIGUEZ-SAONA, C., VALERO, M. L., GONZÁLEZ-CABRERA, J.
1281 & TENA, A. (2024). Not just candy: A herbivore-induced defence-related plant protein in
1282 honeydew enhances natural enemy fitness. *Functional Ecology* **38**(8), 1822–1834.

1283 URBANEJA-BERNAT, P., TENA, A., GONZÁLEZ-CABRERA, J. & RODRIGUEZ-SAONA, C.

1284 (2023). An insect's energy bar: the potential role of plant guttation on biological

1285 control. *Current Opinion in Insect Science* **61**, 101140.

1286 VANTAUXT, A., VAN DEN ENDE, W., BILLEN, J. & WENSELEERS, T. (2011). Large

1287 interclone differences in melezitose secretion in the facultatively ant-tended black bean

1288 aphid *Aphis fabae*. *Journal of Insect Physiology*, **57**(12), 1614–1621.

1289 VEA, I. M. & GRIMALDI, D. A. (2016). Putting scales into evolutionary time: the

1290 divergence of major scale insect lineages (Hemiptera) predates the radiation of modern

1291 angiosperm hosts. *Scientific Reports*, **6**(1), 23487.

1292 VERHEGGEN, F. J., DIEZ, L., SABLON, L., FISCHER, C., BARTRAM, S., HAUBRUGE, E. &

1293 DETRAIN, C. (2012). Aphid alarm pheromone as a cue for ants to locate aphid partners.

1294 PLoS One **7**(8), e41841.

1295 Vilcinskas, A. (Ed.). (2016). *Biology and ecology of aphids*, 14–51. Boca Raton: CRC

1296 Press, Florida.

1297 VILLAGRA, C. A., RAMÍREZ, C. C. & NIEMEYER, H. M. (2002). Antipredator responses of

1298 aphids to parasitoids change as a function of aphid physiological state. *Animal*

1299 *Behaviour*, **64**(5), 677–683.

1300 VINSON, S. B. & SCARBOROUGH, T. A. (1991). Interactions between *Solenopsis invicta*

1301 (Hymenoptera: Formicidae), *Rhopalosiphum maidis* (Homoptera: Aphididae), and the

1302 parasitoid *Lysiphlebus testaceipes* Cresson (Hymenoptera: Aphidiidae). *Annals of the*

1303 *Entomological Society of America*, **84**(2), 158–164.

1304 VIZUETA, J., XIONG, Z., DING, G., LARSEN, R. S., RAN, H., GAO, Q., STILLER, J., DAI, W.,

1305 JIANG, W., ZHAO, J., GUO, C., ZHANG, X., ZUO, D., ZHONG, W., SCHIØTT, M. ET AL.

1306 (2025). Adaptive radiation and social evolution of the ants. *Cell* **188**(18), 4828–4848

1307 VOLLHARDT, I. M., BIANCHI, F. J., WÄCKERS, F. L., THIES, C. & TSCHARNTKE, T. (2010).

1308 Nectar vs. honeydew feeding by aphid parasitoids: does it pay to have a discriminating
1309 palate? *Entomologia Experimentalis et Applicata*, **137**(1), 1–10.

1310 VÖLKL, W. (1992). Aphids or their parasitoids: who actually benefits from ant-
1311 attendance? *Journal of Animal Ecology* **61**(2), 273–281.

1312 VÖLKL, W. (1994). The effect of ant-attendance on the foraging behaviour of the aphid
1313 parasitoid *Lysiphlebus cardui*. *Oikos*, **70**(1), 149–155.

1314 VÖLKL, W. (1997). Interactions between ants and aphid parasitoids: patterns and
1315 consequences for resource utilization. In *Vertical food web interactions: evolutionary
1316 patterns and driving forces*, 225–240. Springer-Verlag Berlin, Berlin

1317 VÖLKL, W. (2001). Parasitoid learning during interactions with ants: how to deal with an
1318 aggressive antagonist. *Behavioural Ecology and Sociobiology*, **49**, 135–144.

1319 VÖLKL, W., HÜBNER, G. & DETTNER, K. (1994). Interactions between *Alloxysta brevis*
1320 (Hymenoptera, Cynipoidea, Alloxystidae) and honeydew-collecting ants: How an aphid
1321 hyperparasitoid overcomes ant aggression by chemical defense. *Journal of Chemical
1322 Ecology* **20**, 2901–2915.

1323 VÖLKL, W., LIEPERT, C., BIRNBACH, R., HÜBNER, G. & DETTNER, K. (1996). Chemical
1324 and tactile communication between the root aphid parasitoid *Paralipsis enervis* and
1325 trophobiotic ants: consequences for parasitoid survival. *Experientia*, **52**, 731–738.

1326 VÖLKL, W. & KROUPA, A. S. (1997). Effects of adult mortality risks on parasitoid
1327 foraging tactics. *Animal Behaviour*, **54**(2), 349–359.

1328 VÖLKL, W. & MACKAUER, M. (1993). Interactions between ants attending *Aphis fabae*
1329 ssp. *cirsiiacanthoidis* on thistles and foraging parasitoid wasps. *Journal of Insect
1330 Behaviour*, **6**, 301–312.

1331 VÖLKL, W. & NOVAK, H. (1997). Foraging behaviour and resource utilization of the
1332 aphid parasitoid, *Pauesia pini* (Hymenoptera: Aphidiidae) on spruce: influence of host
1333 species and ant attendance. *European Journal of Entomology*, **94**(2), 211–220.

1334 VÖLKL, W., WOODRING, J., FISCHER, M., LORENZ, M. W. & HOFFMANN, K. H. (1999).
1335 Ant-aphid mutualisms: the impact of honeydew production and honeydew sugar
1336 composition on ant preferences. *Oecologia* **118**, 483–491.

1337 VORBURGER, C. (2014). The evolutionary ecology of symbiont-conferred resistance to
1338 parasitoids in aphids. *Insect Science* **21**(3), 251–264.

1339 WAAGE, J. K., HASSELL, M. P. & GODFRAY, H. C. J. (1985). The dynamics of pest-
1340 parasitoid-insecticide interactions. *Journal of Applied Ecology* **22**(3), 825–838.

1341 WÄCKERS, F. L., ALBEROLA, J. S., GARCIA-MARÍ, F. & PEKAS, A. (2017). Attract and
1342 distract: Manipulation of a food-mediated protective mutualism enhances natural pest
1343 control. *Agriculture, Ecosystems & Environment* **246**, 168–174.

1344 WÄCKERS, F. L., VAN RIJN, P. C. & HEIMPEL, G. E. (2008). Honeydew as a food source
1345 for natural enemies: making the best of a bad meal? *Biological Control* **45**(2), 176–184.

1346 WANG, B., LU, M., PENG, Y. Q. & SEGAR, S. T. (2021). Direct and indirect effects of
1347 invasive vs. native ant-hemipteran mutualism: a meta-analysis that supports the
1348 mutualism intensity hypothesis. *Agronomy* **11**(11), 2323.

1349 WARD, P. S. (2014). The phylogeny and evolution of ants. *Annual Review of Ecology,*
1350 *Evolution, and Systematics* **45**(1), 23–43.

1351 *WAY, M. J. (1954). Studies on the association of the ant *Oecophylla longinoda* (Latr.)
1352 (Formicidae) with the scale insect *Saissetia zanzibarensis* Williams (Coccidae). *Bulletin*
1353 *of Entomological Research* **45**(1), 113–134.

1354 WAY, M. J. (1963). Mutualism between ants and honeydew-producing Homoptera.
1355 *Annual Review of Entomology* **8**(1), 307–344.

1356 *WELLENSTEIN, G. (1957). Die Beeinflussung der forstlichen Arthropodenfauna durch

1357 Waldameisen (*Formica rufa* Gruppe), I. Teil. Zeitschrift für Angewandte Entomologie,

1358 **41**(2-3), 368–385

1359 *WICHMANN, H. E. (1955). Das Schutzverhalten von Insekten gegenüber Ameisen.

1360 *Zeitschrift für Angewandte Entomologie* **37**(4), 507–510.

1361 WOODRING, J., WIEDEMANN, R., FISCHER, M. K., HOFFMANN, K. H. & VÖLKL, W.

1362 (2004). Honeydew amino acids in relation to sugars and their role in the establishment

1363 of ant-attendance hierarchy in eight species of aphids feeding on tansy (*Tanacetum*

1364 *vulgare*). *Physiological Entomology* **29**(4), 311–319.

1365 XU, C., LI, Q., QU, X., CHEN, J. & ZHOU, A. (2020). Ant–hemipteran association

1366 decreases parasitism of *Phenacoccus solenopsis* by endoparasitoid *Aenasius*

1367 *bambawalei*. *Ecological Entomology* **45**(2), 290–299.

1368 XU, T. & CHEN, L. (2021). Chemical communication in ant–hemipteran mutualism:

1369 potential implications for ant invasions. *Current Opinion in Insect Science* **45**, 121–129.

1370 YAO, I., SHIBAO, H. & AKIMOTO, S. I. (2000). Costs and benefits of ant attendance to the

1371 drepanosiphid aphid *Tuberculatus quercicola*. *Oikos* **89**(1), 3–10.

1372 YOSHIZAWA, K. & LIENHARD, C. (2016). Bridging the gap between chewing and sucking

1373 in the hemipteroid insects: new insights from Cretaceous amber. *Zootaxa* **4079**(2), 229–

1374 245.

1375 ZANETTE, L. Y. & CLINCHY, M. (2019). Ecology of fear. *Current Biology* **29**(9), R309–

1376 R313.

1377 ZHANG, S., ZHANG, Y. & MA, K. (2012). The ecological effects of the ant–hemipteran

1378 mutualism: a meta-analysis. *Basic and Applied Ecology* **13**(2), 116–124.

1379 ZHOU, A., KUANG, B. & GAO, Y. (2015a). Does the host plant affect the benefits from
1380 mutualisms? The invasive mealybug and ghost ant association. *Ecological Entomology*
1381 **40**(6), 782–786.

1382 *ZHOU, A., KUANG, B., GAO, Y. & LIANG, G. (2015b). Density-dependent benefits in
1383 ant-hemipteran mutualism? The case of the ghost ant *Tapinoma melanocephalum*
1384 (Hymenoptera: Formicidae) and the invasive mealybug *Phenacoccus solenopsis*
1385 (Hemiptera: Pseudococcidae). *PLoS One* **10**(4), e0123885.

1386 *ZHOU, A., LU, Y., ZENG, L., XU, Y. & LIANG, G. (2013). *Solenopsis invicta*
1387 (Hymenoptera: Formicidae), defend *Phenacoccus solenopsis* (Hemiptera:
1388 Pseudococcidae) against its natural enemies. *Environmental Entomology* **42**(2), 247–
1389 252.

1390 ZHOU, A., QU, X., SHAN, L. & WANG, X. (2017). Temperature warming strengthens the
1391 mutualism between ghost ants and invasive mealybugs. *Scientific Reports*, **7**(1), 959.

1392 ZHOU, A. M., LIANG, G. W., ZENG, L., LU, Y. Y. & XU, Y. J. (2014). Interactions between
1393 ghost ants and invasive mealybugs: the case of *Tapinoma melanocephalum*
1394 (Hymenoptera: Formicidae) and *Phenacoccus solenopsis* (Hemiptera: Pseudococcidae).
1395 *Florida Entomologist* **97**(4), 1474–1480.

1396 ZHOU, A. M., WU, D., LIANG, G. W., LU, Y. Y. & XU, Y. J. (2015c). Effects of tending by
1397 *Solenopsis invicta* (Hymenoptera: Formicidae) on the sugar composition and
1398 concentration in the honeydew of an invasive mealybug, *Phenacoccus solenopsis*
1399 (Hemiptera: Pseudococcidae). *Ethology* **121**(5), 492–500.

1400

1401 **IX. SUPPORTING INFORMATION**

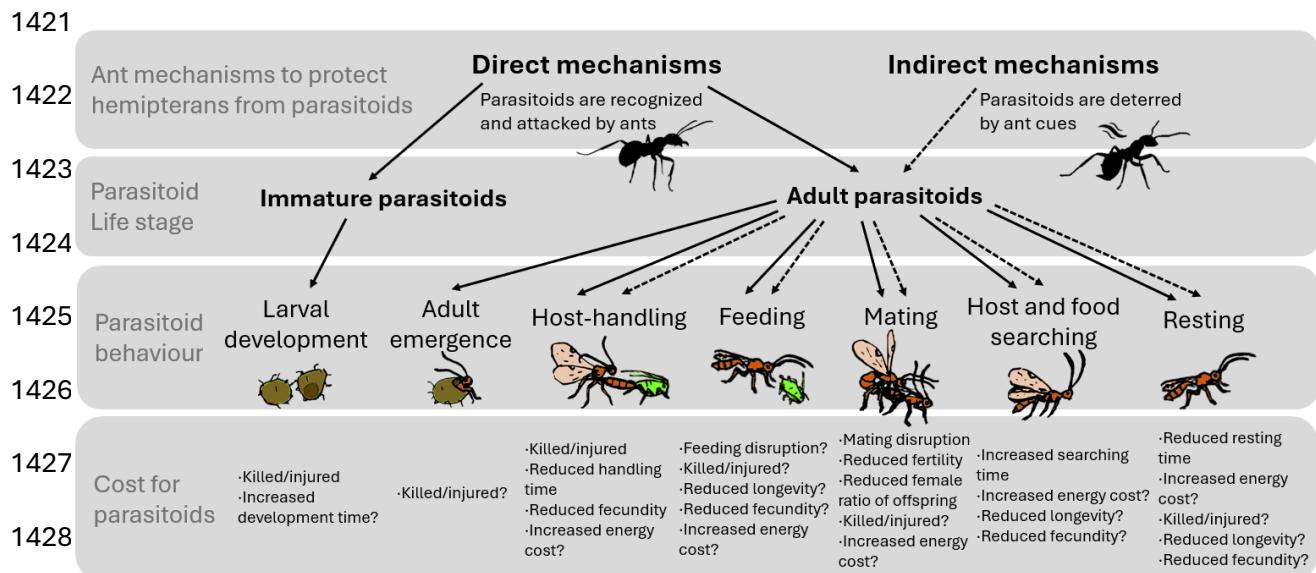
1402 Additional supporting information may be found online in the Supporting Information
1403 section at the end of the article.

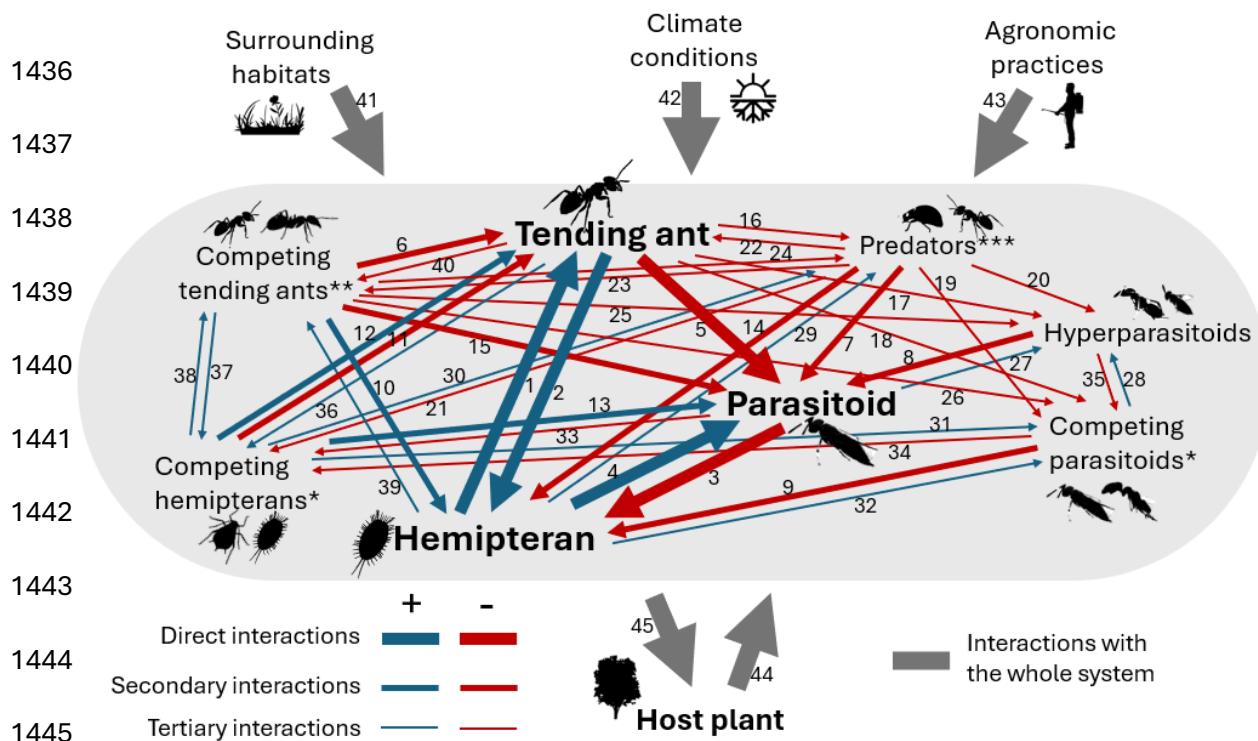
1404 **Table S1.** Studies investigating the interactions between tending ants and parasitoids of
1405 honeydew-producing hemipterans.

1406 **Table S2.** Effects of trophobiotic ants on parasitoids of phloem-feeding hemipterans.

1407 **Table S3.** Parameters used in Table S2 to evaluate the effects of ants on parasitoids of
1408 honeydew-feeding hemipterans.

1417 **Fig. 1.** Trophobiotic ants can recognize and attack immature and adult parasitoids of
1418 phloem-feeding hemipterans. (A) A *Lasius* ant approaches an *Aphidius* parasitoid wasp
1419 attempting to parasitize the aphid *Aphis spiraecola*. (B) A *Lasius* ant recognizes a
1420 mummy of *Aphis gossypii* with an immature parasitoid developing inside.




Fig. 2. Direct and indirect mechanisms by which trophobiotic ants protect phloem-

feeding hemipterans from their parasitoids, and the negative outcomes of these

interactions for parasitoids. Solid arrows represent direct mechanisms, and dashed

arrows represent indirect mechanisms. Potential outcomes for parasitoids that have not

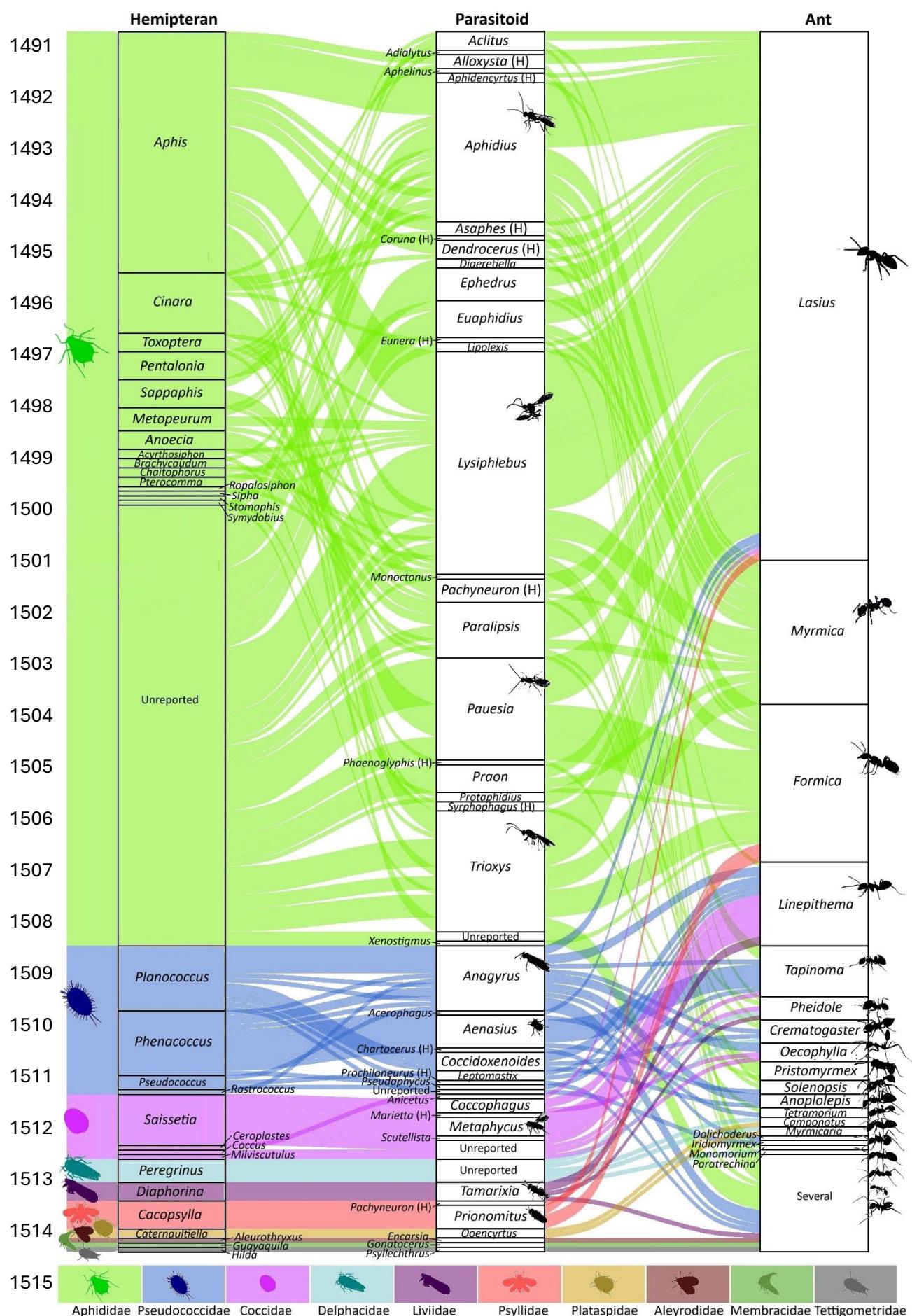
been specifically evaluated are represented with a question mark (?).

Direct interactions

- 1: Tending ant feeds on hemipteran honeydew
- 2: Hemipteran can obtain several ant services not mediated by natural enemies
- 3: Hemipteran is attacked and killed by the parasitoid
- 4: Bottom-up effects of hemipterans on the parasitoid (increased host availability)
- 5: Parasitoid is attacked by tending ants

Secondary interactions

- 6: Tending ant can be attacked by other ants competing for resources or space
- 7: Parasitoid can be attacked and killed by predators
- 8: Parasitoid can be attacked and killed by hyperparasitoids
- 9: Hemipteran can be attacked and killed by other parasitoids
- 10: Hemipteran can obtain several direct services from competing tending ants
- 11: Ant attendance can be reduced because tending ants can be attracted to honeydew excreted by competing hemipterans
- 12: Tending ant can feed on the honeydew of other hemipteran species
- 13: Bottom-up effects of other hemipterans on the parasitoid (increased host availability)
- 14: Hemipteran is attacked and killed by predators
- 15: Parasitoid is attacked by other tending ants


Tertiary interactions

16,17,18: Tending ants attack predators, hyperparasitoids and competing parasitoids to protect hemipterans
19,20,21,22,23: Predators can attack competing parasitoids, hyperparasitoids and competing hemipterans. Some predators can also attack tending ants.
24,25,26: Competing ants can attack predators, hyperparasitoids and competing parasitoids
27,28: Bottom-up effects of the parasitoid and competing parasitoids on hyperparasitoids (increased host availability)
29,30,31,32: Bottom-up effects of hemipterans on predators and competing parasitoids (increased prey and host availability)
33,34: Competing hemipterans are attacked and killed by the parasitoid and competing parasitoids
35: Competing parasitoids are attacked and killed by hyperparasitoids
36,37: Competing hemipterans can obtain direct services from tending ants and competing tending ants
38,39: Competing tending ants feed on honeydew excreted by hemipteran and competing hemipterans
40: Competing tending ants can be attacked by tending ants

Interactions with the hole system

41,42,43,44: The whole system is affected by surrounding habitats, climate conditions, agronomic practices, and host plant.
45: Host plant is affected by the whole system

1485 **Fig. 3.** Direct and indirect interactions mediating the effects of trophobiotic ants on
1486 parasitoids of phloem-feeding hemipterans. *Competing parasitoids and competing
1487 hemipterans can belong to the same species (intraspecific competition), or to different
1488 species (interspecific competition). **Competing tending ants can belong to the same
1489 species from a different colony (intraspecific competition) or different species
1490 (interspecific competition). ***Tending ants might also act as predators.

1516 **Fig. 4.** Proportion of studies evaluating different ant-parasitoid-hemipteran
1517 interactions, grouped by genus. Different colours represent interactions of each family
1518 of hemipterans (see key at bottom of figure). See Table S2 for summary of results and
1519 search terms used to identify the relevant literature. Full details of the 66 selected
1520 studies are provided in Table S1). The height allocated to each genus is proportional to
1521 the number of studies multiplied by the number of species in each genus for each tri-
1522 trophic interaction. (H) = parasitoid genera that are hyperparasitoids.

1523 Table 1. Strategies of parasitoids of phloem-feeding hemipterans that may limit/reduce
 1524 the impact of trophobiotic ants. Examples of species with each strategy are included.

Strategy	e.g. Parasitoid species	References
Behavioural strategies		
Running	<i>Pauesia silvestris</i> , <i>Lysiphlebus japonicus</i>	Völkl & Kroupa (1997); Kaneko (2002)
Jumping	<i>Prionomitus mitratus</i> , <i>Aphidius aphidivorus</i> , <i>P. aphidis</i> , <i>Asaphes vulgaris</i> , <i>Metaphycus</i> spp., <i>Lysiphlebus testaceipes</i> , <i>Anagyrus pseudococci</i>	Novak (1994); Hübner & Völkl (1996); Barzman & Daane (2001); Vinson & Scarborough (1991); Tanga <i>et al.</i> (2015)
Sensitivity of flight behaviour	<i>Pachyneuron aphidis</i> , <i>Pauesia silvestris</i> , <i>Asaphes vulgaris</i> , <i>Tryoxis angelicae</i> , <i>Anagyrus pseudococci</i> , <i>Aphidius colemani</i> , <i>Alloxysta brevis</i>	Völkl & Kroupa (1997); Völkl & Mackauer (1993); Tanga <i>et al.</i> (2015); Herbert & Horn (2008), Hübner (2000)
Rapid movements and reduced host handling time	<i>Coccidoxyenoides perminutus</i> , <i>Pseudaphycus flavidulus</i> , <i>Metaphycus aennekei</i>	Daane <i>et al.</i> (2007); Sime & Daane (2014); Barzman & Daane (2001)
Rapid oviposition	<i>Coccidoxyenoides perminutus</i> , <i>Syrphophagus</i> sp., <i>Lysiphlebus testaceipes</i> , <i>Metaphycus aennekei</i> , <i>Aphidius colemani</i>	Sime & Daane (2014); Kaneko (2002); Völkl & Mackauer (1993); Barzman & Daane (2001); Powell & Silverman (2010)
Non-discriminatory oviposition	<i>Coccidoxyenoides perminutus</i>	Sime & Daane (2014)
Cryptic movements	<i>Pachyneuron aphidis</i> , <i>Lysiphlebus cardui</i>	Hübner & Völkl (1996); Völkl & Mackauer (1993)
Ant-like movements	<i>Lysiphlebus fabarum</i> , <i>Paralipsis enervis</i>	Rasekh <i>et al.</i> (2010), Völkl <i>et al.</i> (1996)
Learning capacity from encounters with aggressive ants	<i>Pauesia picta</i> , <i>Pauesia. pinicollis</i>	Völkl (2001)
Foraging in sites avoided by ants	<i>Pauesia silvestris</i>	Völkl & Kroupa (1997)
Reduced foraging time in host patches with ants or ant cues	<i>Lysiphlebus testaceipes</i> , <i>Tryoxis angelicae</i> , <i>Aenasius bambawalei</i> , <i>Anagyrus vladimiri</i> , <i>Tamarixia radiata</i> , <i>Acerophagous</i> sp., <i>Anagyrus lopezi</i>	Völkl & Mackauer (1993); Tanga <i>et al.</i> (2015); Fanani <i>et al.</i> (2020); Xu <i>et al.</i> (2020); Mouratidis <i>et al.</i> (2021); Kistner <i>et al.</i> (2017); Zhou <i>et al.</i> (2014)
Reduced oviposition attempts in host patches with ants or ant cues	<i>Anagyrus lopezi</i> , <i>Anagyrus pseudococci</i> , <i>Acerophagous</i> , <i>Aenasius bambawalei</i>	Fanani <i>et al.</i> (2020); Tanga <i>et al.</i> (2015); Beltrá <i>et al.</i> (2015); Xu <i>et al.</i> (2020); Sime & Daane (2014)
Mating outside the natal patch	<i>Pauesia pini</i>	Mackauer & Völkl (2002); Nyabuga <i>et al.</i> (2012)
Chemical strategies		

Chemical mimicry of hemipteran hosts	<i>Lysiphlebus cardui</i> , <i>Lysiphlebus fabarum</i> , <i>Lysiphlebus hirticornis</i> , <i>Lysiphlebus japonicus</i> , <i>Adialytus arvicola</i> , <i>Paralipsis enervis</i>	Völkl (1992); (1994); Völkl & Mackauer (1993), Völkl <i>et al.</i> (1996); Liepert & Dettner (1993); Hertaeg <i>et al.</i> (2023); Mackauer & Völkl (2002); Kaneko (2002)
Chemical mimicry of ants	<i>Paralipsis eikoae</i> , <i>Paralipsis enervis</i>	Stary (1966); Akino & Yamoka (1998); Völkl <i>et al.</i> (1996)
Secretion of ant-deterrant substances	<i>Alloxysta</i> spp., <i>Phaenoglyphis</i> spp.	Völkl <i>et al.</i> (1994); Hübner (2000); Hübner <i>et al.</i> (2002)
Recognition and avoidance of ant chemicals	<i>Aenasius babawalei</i> , <i>Anagyrus vladimiri</i>	Xu <i>et al.</i> (2020); Mouratidis <i>et al.</i> (2021)
Morphological strategies		
Increased size and body hardness	<i>Aphidius ervi</i>	Hübner & Dettner (2000)
Reduced size	<i>Coccidoxenoides perminutus</i>	Sime & Daane (2014)
Telescopied abdomen	<i>Protaphidius nawaii</i>	Takada (1983)
Myrmecomorphy	<i>Encyrtus</i> spp., <i>Holcencyrtus</i> spp.	McIver & Stonedahl (1993); Kelly <i>et al.</i> (2022)