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ABSTRACT

Ants and phloem-feeding hemipterans have established one of the most widespread and
best-known mutualisms on Earth. In this mutualism, known as trophobiosis, ants feed
on honeydew excreted by phloem-feeding hemipterans and, in exchange, protect
hemipterans from their antagonists. Parasitoid wasps are among the main groups of
antagonists of phloem-feeding hemipterans. Like trophobiosis, the interaction between
trophobiotic ants and parasitoids of phloem-feeding hemipterans has evolved over
millions of years and is widely distributed both geographically and phylogenetically.
Ants protect phloem-feeding hemipterans from their parasitoids in many different ways,
with outcomes for parasitoids that vary from altered reproduction or development to
death. Consequently, parasitoids have evolved a series of behavioural, chemical, and
morphological adaptations that reduce or limit the impact of trophobiotic ants. Our
review shows that research on these interactions is asymmetric and strongly biased

towards certain taxa and ecosystems, mostly aphids that feed on temperate crops. It will
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be necessary to broaden the range of taxa and ecosystems studied to evaluate how these
interactions have shaped the evolution of phloem-feeding hemipterans, their parasitoids,
and trophobiotic ants. While, in general, the presence of trophobiotic ants reduces the
top-down regulation of phloem-feeding hemipterans by parasitoids, recent findings
suggest that the mechanisms that explain this reduction are more complex than
expected. By reviewing these interactions, the limitations of past research, and the
advantages of current techniques, we provide perspectives to understand: (i) the
mechanisms that ants use to protect hemipterans from parasitoids; (ii) the strategies
evolved by parasitoids to counteract these ants; and (iii) the multiple factors that
modulate the effects of trophobiotic ants on parasitoids of hemipterans. We suggest that
a better understanding of these interactions will improve the management of phloem-
feeding hemipterans, which constitute one of the most damaging groups of pests to

global agriculture.

Key words: Formicidae, mutualism, multitrophic interaction, parasitism, Hemiptera,

honeydew, Hymenoptera, hyperparasitism, parasite, pests.
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L. INTRODUCTION

Hemipterans constitute one of the most diverse, ubiquitous, and abundant groups of
herbivorous insects worldwide (Vea & Grimaldi, 2016; Szwedo, 2016). Among this
diverse group of insects, hemipterans that feed on plant phloem cause severe damage to

agriculture and forestry (Gullan & Martin, 2009; Emdem & Harrington, 2017; Kondo &
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Watson, 2022). These include major global pests, such as aphids, whiteflies, scale
insects, and mealybugs. These hemipterans must excrete excess sugar from their phloem
diet, which is sugar-rich but protein-limited (Douglas, 2009; Urbaneja-Bernat ef al.,
2024). This sugar-rich excretion is called honeydew. A diverse plethora of organisms
feed or develop on honeydew (Way, 1963; Wackers, Van Rijn & Heimpel, 2008; Dhami
etal.,2013; Tena et al., 2016), and it therefore partially drives both the interactions of
hemipterans with other organisms and variation in life histories of phloem-feeding
hemipterans through their interactions with antagonists and mutualists (Styrsky &
Eubanks, 2007; Tena et al., 2016; Pringle, 2021; Fernandez de Bobadilla et al., 2024).
Phloem-feeding hemipterans are attacked by different natural enemies including
microorganisms, generalist and oligophagous predators, and oligophagous parasitoids
(Hirose, 2006; Daane ef al., 2012; Diehl et al., 2013). Among these, parasitoid wasps
belonging to the order Hymenoptera are likely the most diverse and widespread group
of antagonists of phloem-feeding hemipterans (Labandeira & Li, 2021; Cruaud ef al.,
2024). These wasps lay eggs inside or on hemipterans and immatures live as parasites
that eventually kill their hosts. Parasitoid wasps are effective top-down regulators of
phloem-feeding hemipterans and, thereby reduce herbivore pressure (Godfray & Miiller,
1998; Hirose, 2006; Mills, 2009; Boivin, Hance & Brodeur, 2012; Kapranas & Tena,
2015). However, defensive mechanisms of hemipterans, including chemical,
physiological, morphological, and behavioural, can limit top-down suppression caused
by their parasitoids (Blumberg & Van Driesche, 2001; Villagra, Ramirez & Niemeyer,
2002; Desneux et al., 2009; Le Ralec et al., 2010; Vorburger, 2014; Tena et al., 2018a).
Among these defensive mechanisms, the mutualistic relationships that many phloem-
feeding hemipteran species establish with ants is an important constraint for parasitoids

(Holldobler & Wilson, 1990; Volkl, 1997; Delabie, 2001).



101 Ants are among the most abundant arthropods in terrestrial environments and a
102  prime example of interspecific dominance (Ward, 2014; Parker & Kronauer, 2021).

103  Several groups of ants have specific adaptations to feed on honeydew excreted by

104  phloem-feeding hemipterans. These adaptations include the ability to collect, transport,
105  and share liquid food with nestmates (Ward, 2014; Nelson & Mooney, 2022). In

106  exchange, these honeydew-feeding ant species attend phloem-feeding hemipterans and
107  defend them from their natural enemies, including their parasitoids (Fig. 1) (Way, 1963;
108  Holldobler & Wilson, 1990; Delabie, 2001). This aggressive behaviour of ants

109  defending hemipterans is accompanied by specific adaptations of many hemipteran

110  species that facilitate ant attendance, resulting in one of the most widespread and best-
111 known mutualisms on Earth (Ness, Mooney & Lach, 2010; Nelson & Mooney, 2022).
112 This ‘food-for-protection’ mutualism, known as trophobiosis, is widely spread

113  phylogenetically and geographically, and can modulate the arthropod community

114  structure of many ecosystems, including the abundance and diversity of hemipteran

115  parasitoids (Styrsky & Eubanks, 2007; Zhang, Zhang & Ma, 2012; Clark et al., 2019).
116  Despite this widespread mutualism, parasitoids have also evolved a wide range of

117  adaptations that allow them to exploit their hemipteran hosts even when trophobiotic
118  ants protect them (Volkl, 1992, 1997; Kaneko, 2002; Daane et al., 2007; Sime & Daane,
119  2014).

120 The interactions between trophobiotic ants and parasitoids of phloem-feeding

121 hemipterans, along with the biotic and abiotic factors that modulate these interactions,
122 may contribute to explaining the evolutionary success of phloem-feeding hemipterans in
123  many ecosystems. Ant—hemipteran interactions have been extensively studied and

124  reviewed (e.g. Styrsky & Eubanks, 2007; Nelson & Mooney, 2022). However, few

125  works have synthesized the interactions between trophobiotic ants and the parasitoids of



126  hemipterans, despite the high impact of parasitoids on hemipterans and the large

127  number of case studies. Prior reviews on these interactions are restricted to a single

128  family of hemipterans: the aphids (Stary, 1966; Volkl, 1997). Moreover, recent research
129  with novel techniques and a higher diversity of ants, parasitoids, and hemipterans has
130 revealed that the mechanisms that explain the effects of trophobiotic ants in the

131 regulation of phloem-feeding insects via their parasitoids are more complex than

132 previously thought.

133 Herein, we first synthesize the evolutionary history of the interactions between
134  trophobiotic ants and parasitoids of phloem-feeding hemipterans. We then explain how
135  ants protect phloem-feeding hemipterans from parasitoids; and how some parasitoid
136  species have adapted to exploit ant-attended hemipterans. The outcome of these

137 interactions and the main factors that modulate them are also discussed. We use these
138  findings to propose future research directions on these interactions, and to discuss

139  different approaches to enhance the control of phloem-feeding hemipteran pests.

140

141 II. EVOLUTIONARY HISTORY OF THE INTERACTIONS BETWEEN

142  TROPHOBIOTIC ANTS AND PARASITOIDS OF PHLOEM-FEEDING

143 HEMIPTERANS

144 (1) Origin of hemipteran—parasitoid interactions

145 Hemipterans appeared 330-310 million years ago (Ma) from an herbivorous

146  ancestor belonging to the order Paraneoptera, which already had specialized mouthparts
147  for feeding on liquid diets (Nel et al., 2013; Yoshizawa & Lienhard, 2016). Hemipterans
148  then evolved more specialized mouthparts, known as stylets, that allowed them to reach
149  phloem vessels of plants (Szwedo, 2016). During this evolutionary process, the order

150  Hemiptera diversified into three suborders. The suborders Sternorrhyncha and
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Auchenorrhyncha remained specialized in feeding on phloem, while the suborder
Heteroptera evolved predatory habits (Nelson & Mooney, 2022). Most extant clades of
phloem-feeding hemipterans, including those that are major agricultural pests, are found
in the suborder Sternorrhyncha, which appeared around 300 Ma (Drohojowska et al.,
2020). The infraorder Aphidomorpha originated in the mid-Permian (around 280 Ma),
Aleyrodomorpha in the Middle Jurassic (around 160 Ma), and Coccidomorpha in the
early Cretaceous (around 140 Ma) (Drohojowska et al., 2020). Sternorrhyncha radiated
rapidly during the Cretaceous, coinciding with the origin of angiosperms (Vea &
Grimaldi, 2016; Hardy, 2018). Some abundant and diverse extant Sternorrhyncha
families such as Pseudococcidae originated before the Mid-Cretaceous (150 Ma), while
others, such as Coccidae and Aphididae, appeared in the Late Cretaceous (100—66 Ma).
The spreading and diversification of phloem-feeding hemipterans was followed
by an increase in abundance and diversity of higher trophic levels. Different clades of
generalist predators and parasitoids gradually evolved into specialists (Labandeira & Li,
2021). Among these, hymenopteran parasitoid wasps reached notable diversity and
abundance (Cruaud et al., 2024), with a radiation that began around 266—195 Ma
(Peters et al., 2017). The oldest records of parasitoids of phloem-feeding hemipterans
can be dated to the Triassic (206 Ma) for representatives of the superfamilies
Ichneumonoidea and Cynipoidea (Blaimer et al., 2023; Labandeira & Li, 2021). In the
Early Cretaceous (145—-100 Ma), there was an extensive radiation within the
Hymenoptera, which resulted in the origin of several clades of parasitoids exploiting
phloem-feeding hemipterans, including the superfamilies Ceraphronoidea (family
Megaspilidae) and Chalcidoidea (families Aphelinidae, Calesidae, Idioporidae,
Trichogrammatidae, and Eulophidae) (Cruaud ef al., 2024; Blaimer et al., 2023;

Labandeira & Li, 2021; Peters et al., 2017). Many groups of parasitoids of phloem-
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feeding hemipterans originated in the Late Cretaceous (100-66 Ma), including the
family Encyrtidae (Chalcidoidea) and the superfamilies Apoidea (family Crabronidae)
and Neostrepsiptera (family Halictophagidae). Parasitoid clades attacking phloem-
feeding hemipterans, including most Chalcidoidea families, underwent notable
diversification in Palaeocene (66—56 Ma) and Eocene (56-33.9 Ma) (Cruaud et al.,

2024).

(2) The involvement of ants in hemipteran—parasitoid interactions

Ants originated approximately 160 Ma, primarily exploiting resources from the
ground (Moreau et al., 2006; Vizueta et al., 2025). Ants began foraging in plant
canopies during the Early Cretaceous (about 120 Ma), and different arboreal-foraging
traits emerged following angiosperm diversification in the Late Cretaceous (100—66
Ma) (Nelsen, Ree & Moreau, 2018; Nelson & Mooney, 2022). This process involved a
shift from exclusively predatory behaviour to incorporating plant-based food sources
into their diet. Several extant canopy-foraging ant species, even some that feed on
honeydew, still prey on hemipterans to meet their protein requirements (Sakata, 1994;
Oftenberg, 2001). While foraging in plant canopies, ants also began to consume sugary
liquid resources, including plant nectar and honeydew excreted by phloem-feeding
hemipterans. As a result, several clades of ants developed trophallaxis, which is the
collection and sharing of liquid resources with nestmates that do not forage, including
larvae and queens. Trophallaxis allowed ant colonies to become ecologically dominant
(Nelsen et al.,2018; Meurville & LeBoeuf, 2021). Ant-hemipteran trophobiotic
associations occurred as early as the Eocene (56 Ma) (Nelsen et al., 2018). Over the last

50 Ma, different traits evolved in ants in response to ant—hemipteran interactions, such
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as the symbiotic gut bacteria that facilitated further shifts from predatory to honeydew-
feeding habits (Davidson et al., 2003; Nelson & Mooney 2022).

While honeydew-feeding ants took advantage of a high-energy food resource,
phloem-feeding hemipterans also benefitted from the exploitation of honeydew by ants.
First, the ants reduced predation on the attended honeydew-producing hemipterans. In
addition, ants evolved behaviours that favoured honeydew-producing hemipterans,
including transportation of hemipterans (Ho & Khoo, 1997), cleaning and sanitizing
(Queiroz & Oliveira, 2001; Nielsen, Agrawal & Hajek, 2010), and protection from
natural enemies (Delabie, 2001; Styrsky & Eubanks, 2007). These ‘food-for-protection’
interactions, called trophobiosis, extended across multiple clades of ants and phloem-
feeding hemipterans to become one of the most widespread mutualisms (Pringle, 2021;
Nelson & Mooney, 2022). This represents an important defensive advantage for
hemipterans attended by ants, which were likely attacked by abundant and diverse
parasitoid wasps when ant—hemipteran trophobiotic associations emerged (Blaimer et
al.,2023; Cruaud et al., 2024).

Ant attendance, however, also has direct and indirect costs for phloem-feeding
hemipterans (Stadler & Dixon, 1998; Yao, Shibao & Akimoto, 2000; Katayama &
Suzuki, 2002). This trade-off may explain why many lineages of phloem-feeding
hemipterans are not tended by ants, and why most ant—-hemipteran mutualisms are
facultative (Stadler & Dixon, 1999, 2005). The presence of parasitoids can be critical
for the benefits to outweigh the costs for hemipterans in these interactions. For example,
an increased concentration of melezitose in the excreted honeydew carries a fitness cost
for hemipterans, but this compound attracts ants that can provide services including
reduced mortality from parasitoids (Itioka & Inoue, 1996; Fischer & Shingleton,

2001;Zhou et al., 2015c¢). Indeed, the rapid expansion and diversification of ant—
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hemipteran trophobiotic interactions may have been an important mechanism that
promoted adaptive radiation in the parasitoids of hemipterans in the Eocene. Radiation
of parasitoids of phloem-feeding hemipterans over the last 100 Ma has been linked to
radiations of both angiosperms and hemipterans (Cruaud et al., 2024; Jouault ef al.,
2025). It is likely, however, that ant attendance also became an important mechanism
promoting the radiation of some groups of hemipterans around 50 Ma due to the
negative impacts of tending ants on parasitoids of phloem-feeding hemipterans in many

different ecosystems.

II1. HOW DO TROPHOBIOTIC ANTS PROTECT PHLOEM-FEEDING
HEMIPTERANS FROM THEIR PARASITOIDS?

Ants protect their mutualistic phloem-feeding hemipterans in several ways. These
protective mechanisms have been widely studied both in the field and under laboratory
conditions (see online Supporting Information, Table S1), and have variable
consequences for the parasitoids, ranging from reduced longevity or fertility to

mortality (Fig. 2).

(1) Direct mechanisms
(a) Ants attack adult parasitoids

To attack adult parasitoids, ants first need to recognize the parasitoids of phloem-
feeding hemipterans using either olfactory, mechanical, or visual cues. Among these
cues, chemical—olfactory signals, such as cuticular hydrocarbons (CHCs) of parasitoids,
are likely the most important (Liepert & Dettner, 1993; Hertaeg et al., 2023). Ants can
also detect volatile alarm cues released by hemipterans when these are attacked by

parasitoids (Verheggen et al., 2012). In addition, previous experience can help
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trophobiotic ants recognize parasitoids as antagonists, as it is assumed for some
predators of hemipterans (Novgorodova, 2015).

Once attending ants recognize the searching parasitoid approaching the colony,
they rapidly approach it and usually tap it with their antennae (Takada & Hashimoto,
1985; Volkl & Mackauer, 1993; Kaneko, 2002; Feng et al., 2015). Afterwards, the ants
typically open their mandibles to seize the parasitoid (Kaneko, 2002; Hiibner & Volkl,
1996; Fanani et al., 2020). Most parasitoids tend to flee, but ants can follow (Volkl &
Kroupa, 1997), or capture them with their mandibles (Volkl ef al., 1996; Volkl &
Mackauer, 1993; Dejean, Ngriegeu & Borgoin, 1996). Additionally, neighbouring ant
workers can join the pursuit to attack the parasitoid (VOlkl et al., 1996; Dejean et al.,
1996; Barzman & Daane, 2001). During capture, ants may bite the parasitoid on
different body parts (Hiibner & Volkl, 1996; Volkl et al., 1996; Volkl, 1992;
Stechmann, V6lkl & Stary, 1996; Tanga ef al., 2015; Takada & Hashimoto, 1985;
Barzman & Daane, 2001). Ants sometimes transport the seized parasitoid to their nest
(Dejean et al., 1996). While most studies have observed that ants pursue and bite
parasitoids, none has reported that ants spray formic acid or other compounds against
parasitoids.

Attending ants will attack the adult parasitoid at all stages of its approach: while
recognizing the hemipteran colony using its antennae; laying its egg/s (Heimpel,
Rosenheim & Mangel, 1997; Kaneko, 2003b; Daane et al., 2007; Beltra, Soto & Tena,
2015; Tanga et al., 2015; Feng et al., 2015; Fanani ef al., 2020); or while feeding on
hemipteran haemolymph (host feeding) or honeydew (Chan & Godfray, 1993) (Fig. 2).
If the parasitoid succeeds in parasitizing its host, ants can also attack its offspring when
they emerge. Ants might also attack adult parasitoids when they are resting, searching,

mating or feeding on other resources (e.g. nectar or pollen) on outside the hemipteran
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colony (Vollhardt et al., 2010; Nyabuga et al., 2012; Tanga et al., 2015; Tena, Bouvet &
Abram, 2022).

The consequences of these ant attacks are highly variable for adult parasitoids
(Fig. 2). While captured parasitoids can be severely injured or killed, most parasitoids
jump or fly away to avoid ant attacks (Hiibner & Vo6lkl, 1996; VOIkl et al., 1996, 1992;
Stechmann et al., 1996, Powell & Silverman, 2010; Feng et al., 2015; Tanga et al.,
2015; Tena, Stouthamer & Hoddle, 2017). Even if parasitoids escape, ant attacks can
have a cost for the surviving parasitoid, such as reduction of its current or future
reproductive capacity, or longevity (e.g. Volkl, 1992, 1994; Zhou et al., 2014; Barzman
& Daane, 2001; Martinez-Ferrer, Grafton-Cardwell & Shorey, 2003; Beltra, Soto &
Tena, 2015; Tena et al., 2017; Fanani et al., 2020). Additionally, ant attacks can affect
the sex ratio of the parasitoid offspring when, because of an attack, female parasitoids
are unable to fertilize their eggs (Tanga et al., 2015). Finally, ant attacks can reduce
parasitoid resting time (Vinson & Scarborough, 1991; Volkl & Novak, 1997), with the
resulting increase in energy consumption potentially reducing parasitoid longevity and

fecundity.

(b) Ants attack immature parasitoids

Parasitoids of phloem-feeding hemipterans are mainly endoparasitoids
(Labandeira & Li, 2021; Cruaud et al., 2024). This means that their larvae and pupae
develop inside the parasitized hemipteran until they emerge as adults. Interestingly,
some ant species can detect and bite parasitized hemipterans, likely killing the immature
parasitoids (Fig. 2) (Takada, 1983; Vinson & Scarborough, 1991; Tanga et al., 2015;
Plata et al., 2025), although the signals ants use to recognize parasitized hemipterans

remain to be clarified.
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(2) Indirect mechanisms

The presence of ants tending to hemipterans can deter a searching parasitoid (Fig.
2). Adult parasitoids can detect ants using visual, mechanical, and chemical cues (Dicke
& Grostal, 2001; Xu et al., 2020; Mouratidis et al., 2021). Chemical cues, such as
CHC s of ants, can deter a searching parasitoid even when ants are not attending the
hemipteran colonies (Xu et al., 2020; Mouratidis et al., 2021), which can be considered
as an example of ‘ecology of fear’ (Zanette & Clinchy, 2019). This deterrence may
explain the increased time invested by the adult parasitoid to locate a suitable
hemipteran host when ants are present (e.g. Vinson & Scarborough, 1991; Tanga ef al.,
2015; Fanani et al., 2020), with a potential cost in terms of energy, longevity and
fecundity. Additionally, ant cues might affect other parasitoid behaviours such as

feeding, mating, or resting in the ant foraging areas.

IV. COUNTERSTRATEGIES OF PARASITOIDS

Parasitoids of phloem-feeding hemipterans have evolved behavioural, chemical,
and morphological traits that can reduce or limit the impact of trophobiotic ants (Table
1). While many of these adaptations include generalist responses to avoid attacks from
ants or other organisms, others, such as chemical mimicry, are highly specific. In a few
cases, these adaptations of parasitoids even allow them to benefit from the presence of

ants.

(1) Behavioural strategies
Adult parasitoids run, jump, or fly away to escape from antagonists, including

ants (e.g. Novak, 1994; Barzman & Daane, 2001; Herbert & Horn, 2008) (Table 1). In
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addition to these generalist behaviours, some parasitoid species show better adaptations
to trophobiotic ants and move quickly or parasitize faster to avoid their attacks. These
species may increase their success in the presence of trophobiotic ants because of
reduced competition or intraguild predation (Barzman & Daane, 2001; Daane et al.,
2007; Powell & Silverman, 2010; Zhou et al., 2014; Kistner et al., 2017; Xu et al.,
2020; Mouratidis et al., 2021). For example, the mealybug parasitoid Pseudaphycus
flavidulus is able to parasitize in the presence of tending ants, while the parasitoid
Leptomastix epona, which moves more slowly while handling its host, can be attacked
and killed by ants before it is able to oviposit (Daane et al., 2007). Coccidoxenoides
perminutus, another mealybug parasitoid, has rapid and non-discriminatory oviposition
behaviour which enables it to be less affected by tending ants than slower-ovipositing
mealybug parasitoids such as Anagyrus pseudococci (Sime & Daane, 2014).
Metaphycus hageni, a soft scale parasitoid with a long handling time and slow
oviposition, is unable to parasitize its host when it is ant-attended. Other Metaphycus
species with shorter oviposition time are more successful (Barzman & Daane, 2001).
Parasitoid species that perform other activities, such as mating or feeding, faster might
have a higher likelihood of success in the presence of aggressive ants, although these
traits have not been evaluated.

Some species of hemipteran parasitoids perform cryptic movements (i.e.
inconspicuous movement by walking slowly) or show ant-like locomotory behaviour
(e.g. ant-like antennation). These behaviours may reduce ant detection and/or
aggression, but may also function to deceive other potential antagonists or to reduce
defensive behaviours of hemipterans (Hiibner & Volkl, 1996; Rasekh et al., 2010).
Another parasitoid strategy to defeat ants is to forage in areas where ants move less

effectively, where it is harder for them to capture parasitoids (Volkl & Kroupa, 1997).
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Some parasitoid species detect ant cues and use this to reduce their exposure to
trophobiotic ants (e.g. Zhou et al., 2014; Sime & Daane, 2014; Beltra et al., 2015). Ant-
avoidance might also explain why some parasitoid species forage and mate outside their
natal patch (Mackauer & Volkl, 2002; Nyabuga et al., 2012). Future research could also
investigate whether parasitoids of hemipterans search for hosts when ants are less
active. For example, during hot Mediterranean summers, the trophobiotic ant species
Lasius grandis reduces hemipteran attendance at noon, and parasitoids might use this
window to attack their hemipteran hosts (Pekas et al., 2011).

Finally, the ability of parasitoids to learn may also modulate the effects of
trophobiotic ants (Giunti ef al., 2015). Some parasitoid species can learn from
encounters with trophobiotic ants and modify their behaviour accordingly. For example,
naive females of the aphid parasitoids Pauesia picta and Pauesia pinicollis flee when
encountering an ant. However, after non-aggressive ant encounters, experienced female
parasitoids change their behaviour by approaching ants from the side and at an
increased distance. These experienced females have a higher oviposition rate than naive

females or females searching for an unattended host (Vo6lkl 2001).

(2) Chemical strategies

In general, ants have high sensitivity to chemical cues, and many organisms use
chemical signals to deceive them (Akino, 2008). Some parasitoids of phloem-feeding
hemipterans use chemical mimicry (e.g. a CHC profile similar to that of their
hemipteran hosts) to avoid detection by tending ants or to reduce ant aggressiveness
(Hiibner & VoIkl, 1996; Volkl, 1997) (Table 1). Host chemical mimicry has been
studied in aphid parasitoids of the genus Lysiphlebus, which are often not attacked by

trophobiotic ants of the genera Lasius and Myrmica (V6lkl, 1992, 1994; Volkl &
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Mackauer, 1993; Liepert & Dettner, 1993, 1996; Hertaeg ef al., 2023). Alternatively,
other parasitoid species possess a CHC profile similar to that of ant larvae. This has
been observed in two species of parasitoids of root aphids belonging to genus Paralipsis
(Takada & Hashimoto, 1985; VOlkl et al., 1996; Akino & Yamaoka, 1998). Paralipsis
parasitoids wrongly identified as ant larvae are carried by ant workers to their colony
and fed through trophallaxis. By rubbing the ants, parasitoids acquire the specific odour
of the ant colony. Outside the colony, this odour allows them to parasitize their aphid
hosts without being attacked by workers from the ant colony they have lived with. It has
been observed that parasitoids with chemical mimicry strategies that allow them to
avoid being attacked by ants prefer to forage in ant-attended patches (Volkl, 1994;
Akino & Yamaoka, 1998).

Another strategy of parasitoids is to release ant deterrents (V6lkl, Hiibner &
Detner, 1994; Hiibner, 2000). Females of the aphid hyperparasitoid Alloxysta brevis
release a mandibular secretion containing actinidin and other compounds in response to
an ant attack. This secretion functions both in self-defence if the female is seized by an
ant worker, by acting a repellent, and prevents ant attacks during subsequent encounters
(VOIKkl et al., 1994). Hiibner et al. (2002) found these mandibular gland secretions to be
present in many alloxystine parasitoids belonging the genera Alloxysta and
Phaenoglyphis, including species of parasitoids whose hemipteran hosts are not
attended by ants. They found that the released compounds were also deterrent to other
parasitoid antagonists such as spiders (Hiibner & Dettner, 2000), implying that this
defensive mechanism is not ant specific. Although the release of defensive chemicals is
common among other natural enemies of hemipterans, such as predatory coccinellids
(Majerus et al., 2007; Plata et al., 2024c), for hemipteran parasitoids it has only been

demonstrated in alloxystine wasps. Ant-deterrent chemicals have been identified in
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parasitoids of flies, such as the figitid Leptopilina heterotoma (Stokl et al., 2012). This

strategy may be widespread but remains to be investigated for most parasitoids.

(3) Morphological adaptations

The morphology of parasitoids can also play a key role against ants. For example,
features of parasitoids such as body hardness and shape can also vary among species.
One study showed that the body of the parasitoid Aphidius ervi can survive greater
pressures than that of smaller parasitoids such as Lysiphlebus cardui and Aphidius
rhopalosiphi (Hiibner & Dettner, 2000). This increased hardness translated into lower
mortality when the parasitoids were attacked by a spider, although it was not evaluated
against ants. On the other hand, the small size of some parasitoids, such as
Coccidoxenoides, has been postulated as a morphological adaptation to reduce detection
by ants (Sime & Daane, 2014). Other morphological traits, such as the tubiform and
telescoped abdomen found in female parasitoids of the genus Protaphidius, have also
been associated with ants. Protaphidius parasitoids are specialized to Stomaphis aphids
that live in bark crevices and are always attended by ants. It has been suggested that this
telescoped abdomen may serve not only to reach the aphids in deep crevices of the bark,
but also to oviposit from behind the attending ants (Takada, 1983). Furthermore,
myrmecomorphy, a morphological resemblance to ants, is known from several
parasitoids of phloem-feeding hemipterans (Table 1). For example, Encyrtus and
Holcencyrtus resemble ants by either an absence of wings or camouflaging them
(Mclver & Stonedahl, 1993; Kelly ef al., 2022). Although these visual signals might not
deceive ants because they typically use chemosensation (Jackson & Ratnieks, 2006), an
ant-like appearance may benefit parasitoids against other antagonists, such as intraguild

predators (Malcicka et al., 2015).
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V. FACTORS MODULATING INTERACTIONS BETWEEN TROPHOBIOTIC
ANTS AND PARASITOIDS OF PHLOEM-FEEDING HEMIPTERANS

The outcome of interactions between trophobiotic ants and parasitoids of phloem-
feeding hemipterans will depend on traits of hemipterans, ants, and parasitoids, which
may vary both inter- and intraspecifically (Table S2; see Table S3 for definitions of each
measure). Furthermore, various external biotic and abiotic factors can modulate ant—

hemipteran—parasitoid interactions (Fig. 3).

(1) Hemipteran host

The effects of trophobiotic ants on parasitoids of phloem-feeding hemipterans
have been studied in 45 hemipteran species, belonging to 30 genera and ten families
(Fig. 4). Most of studies focus on a few aphid species, mainly Aphis fabae, that
dominate in temperate ecosystems; the number of studies on hemipteran families that
dominate in tropical ecosystems is much lower (Vilcinskas, 2016; Kondo & Watson,
2022). This lack of knowledge is particularly important because hemipteran-tending
ants dominate plant canopies in the tropics (Davidson & Patrell-Kim, 1996; Bliithgen et
al., 2000).

The general pattern is that ants have negative effects on parasitoidss of
hemipterans, but these effects depend on the species of hemipteran that ants attend
(Table S2). This is likely because the number of tending ants per hemipteran (i.e.
relative ant attendance) and their aggressivity depends on the quantity and quality of the
honeydew excreted (VOIkl et al., 1999; Woodring et al., 2004; V6lkl & Novak, 1997;
Pekas et al., 2011; Tena, Hoddle & Hoddle, 2013a; Plata et al., 2024b, 2025), and both

quantity and quality vary inter- and intraspecifically among hemipterans (Detrain ef al.,
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2010; Vantaux et al., 2011; Katayama et al., 2013; Hogervorst, Wackers & Romeis,
2017; Tena, Llacer & Urbaneja 20135, Tena et al., 2018b; Urbaneja-Bernat ef al., 2024).
In addition to honeydew nutritional value, hemipteran specific semiochemicals such as
pheromones, CHCs, and volatiles produced by honeydew bacteria, mediate location,
recognition, selection and learning by mutualistic ants (Xu & Chen, 2021). For instance,
some hemipterans produce CHCs that resemble those of tending ants, which may inhibit
ant aggression and induce ant attendance (Endo & Itino, 2013). Thus, ant attendance is
highly variable among hemipteran species, from hemipterans that are obligate ant-
mutualists, such as the aphid tribe Fordini, to those that are not attended by ants, such as
the aphid Brachycaudus mimeuri (Depa et al., 2020).

Importantly, the ant-attention received by a hemipteran and the aggressiveness of
ants protecting it are also modulated by the presence and abundance of neighbouring
honeydew-producing hemipterans both at the intra- and interspecific levels. On some
plants, different hemipteran species can share ants from the same nest and compete for
their attendance at low ant densities (Cushman & Addicott, 1989; Cushman & Whitham,
1991; Woodring et al., 2004; Pekas et al., 2011; Tena, 20130). For example, in the
Mediterranean region, mealybugs infesting citrus trees are highly attended by dominant
trophobiotic ants that do not attend aphids or whiteflies when mealybugs are present
(Pekas et al., 2011; Tena et al., 2013a). Hemipterans also compete for ant-attention
intraspecifically, and individuals that excrete a lower quality or amount of honeydew
may not be attended and may even be predated by ants (Cushman & Addicott, 1989;
Sakata, 1994; Vantaux et al., 2011; Matsuura ef al., 2025). Interestingly, hemipteran
traits facilitating ant attendance can also indirectly affect parasitoids in various ways.

For example, an improvement in the quality of honeydew, or the development of
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structures that retain rather than expel honeydew, would benefit both tending ants and
also parasitoids that feed on honeydew (Tena ef al., 2016).

Another important factor modulating the effect of ants on parasitoids is the size of
the hemipteran colony attended by ants. Several studies suggest that the effects of ants
on parasitoids is enhanced as hemipteran colony size increases (Volkl, 1994; Itioka &
Inoue, ). This is likely because larger colonies of hemipterans are more attractive to ants
and, therefore, have a higher probability of ant attendance and a higher number of
tending ants (absolute ant attendance) (Plata et al., 2024b, 2025). By contrast, the
ant:hemipteran ratio (relative ant attendance) is higher in smaller attended colonies.
Therefore, although the likelihood of being attended by ants increases with hemipteran
colony size, individuals in smaller attended colonies may be better protected (Breton &
Addicott, 1992; Harmon & Andow, 2007).

Finally, microbial endosymbionts of hemipterans, which can vary extensively
among species but also intraspecifically, can influence many ecologically relevant traits
of their hosts (Olivier et al., 2010). Some of these endosymbionts can provide
protection for hemipterans against their parasitoids. Interestingly, the presence of
tending ants may reduce the abundance of these defensive endosymbionts of
hemipterans (Mandrioli et al., 2016). These endosymbionts also can indirectly modulate
the impact of trophobiotic ants on the parasitoids of hemipterans. First, they can
modulate the attraction of ants because they can affect the composition of honeydew
and thus its volatiles (Schillewaert et al., 2017). Second, endosymbionts can affect the
CHC profile of hemipterans that is used by ants for trophobiont recognition (Hertaeg et
al.,2021). This may have important implications for the establishment of mutualisms

between ants and hemipterans. Strikingly, the CHCs of hemipteran hosts may also affect
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the CHC profiles of parasitoids and the aggressiveness of ants towards them (Hertaeg et

al., 2023).

(2) Trophobiotic ant

The effects of trophobiotic ants on parasitoids of hemipterans have been evaluated
in 40 ant species belonging to 18 different genera, with Lasius being the most studied
genus in terms of both the number of species the number of studies (Fig. 4; Table S2).
Some trophobiotic ant species are more aggressive than others when they attend to
hemipterans (Buckley & Gullan, 1991; Stechmann et al., 1996; Hiibner & Volkl, 1996;
Hiibner, 2000; Kaneko, 2007), and aggressiveness may determine their impact on
parasitoids of hemipterans (Buckley & Gullan 1991). For example, Lasius niger is more
aggressive than Pristomyrmex pungens against the aphid parasitoid Lysiphphlebus
japonicus (Kaneko, 2003b). Similarly, the parasitoid Anagyrus lopezi is more aftected
by the ant Oecophylla smaragdina than by Anoplolepis gracilipes or Dolichoderus
thoracicus, which are less aggressive, when the parasitoid attacks the cassava mealybug
Phenacoccus manihoti (Fanani et al., 2020). Both the number of tending ants and their
aggressiveness in defending hemipterans from parasitoids can also be strongly
influenced by seasonality. This is because the nutritional demands of ants change
throughout the year, leading to significant dietary shifts across seasons (Mooney &
Tillberg, 2005).

The behavioural responses of ants toward hemipterans and their parasitoids also
depends on the ability of ants to recognize hemipterans as trophobiont partners and their
parasitoids as antagonists. This cognitive ability may vary considerably among ants and
can be both innate and based on previous experience. For example, some ant species can

innately recognize long-chain CHCs produced by certain hemipterans (Endo & Itino,
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2013; Salazar et al., 2015). Ants also leave their own CHCs on the attended
hemipterans, resulting in reduced aggression from ant nestmates towards these ‘marked’
hemipterans (Sakata, 1994; Endo & Itino, 2012; Foronda et al., 2025). Furthermore,
ants are exceptionally skilled at associating scents with food rewards (e.g. Huber &
Knaden, 2018; Czaczkes & Kumar, 2020). Different ant species, including Linepithema
humile, Pristomyrmex punctatus, Tetramorium tsushimae, and Lasius niger, can learn to
associate the CHCs of hemipterans with a honeydew reward (Choe & Rust, 2006; Hojo
et al., 2014; Hayashi, Nakamuta & Nomura, 2015; Hertaeg et al., 2021). Trophobiotic
ant species with higher learning capacity therefore might establish new trophobiotic
relationships with non-coevolved hemipterans more easily (Plata et al., 2024b, 2025).
Similarly, the aggressiveness of ants towards the natural enemies of hemipterans can be
innate (Novgorodova, 2015; Dorosheva, Yakovlev & Reznikova, 2011), but experience
may also play a role in the recognition of antagonists by some ant species (Hollis et al.,
2017). The variability of innate versus learned responses towards the parasitoids of
hemipterans among different ant species remains to be evaluated.

Other ant traits might modulate their impact on the parasitoids of hemipterans. For
example, traits that facilitate resource monopolization by ants, such as increased colony
size, polydomy (i.e. the ability to establish nests in various locations), or polygyny (i.e.
several queens in the nest, which is associated with lower intraspecific aggression), have
been linked to higher ant-attendance levels of hemipterans (Bliithgen & Fiedler 2004;

Oliver, Leather & Cook, 2008; Nelson & Mooney, 2022).

(3) Parasitoid
The effects of ants on parasitoids of hemipterans have been specifically evaluated

in 86 different parasitoid species (Table S2). Most studied parasitoid species are primary
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parasitoids, while the impact of ants on a few hyperparasitoids has been studied
particularly for some aphid hosts such as Aphis fabae (Fig. 4; Table S2). A variety of
chemical, morphological and behavioural traits of parasitoids modulate their
interactions with trophobiotic ants and some of these traits are species specific (see
Section IV). As illustrative examples, Barzman & Daane (2001) found that different
species of parasitoids of the same genus respond differently when they attack the soft
scale Saissetia oleae that it is tended by the Argentine ant Linepithema humile. Unlike
Metaphycus anneckei, Metaphycus hageni is unable to parasitize S. oleae when it was
attended by ants. The authors suggested that this is likely because M. anneckei needs
less handling and oviposition time and, therefore, can escape before the ants attack.
Likewise, Liepert & Dettner (1993) found that the ant Lasius niger is aggressive
towards the aphid parasitoid Trioxys angelicae, but the parasitoid Lysiphlebus cardui,
which possesses aphid-like CHCs, is not treated aggressively. Furthermore, genotypic
variation can explain intraspecific variability of parasitoids facing trophobiotic ants.
Using different lines of the parasitoid Lysiphlebus fabarum, Hertaeg et al. (2023)
showed that the genotype affected parasitoid CHC profiles and aggression by the ant L.
niger.

Ants can also negatively affect parasitoid antagonists, including parasitoid
predators (Kaneko, 2003a, 2007), competing parasitoids, and hyperparasitoids (Volkl,
1992; Hiibner & Volkl, 1996). Therefore, some parasitoid species may benefit indirectly
from an enemy-free space created by tending ants. For example, the parasitoid
Lysiphlebus cardui benefits indirectly when its host Aphis fabae is attended by Lasius
niger ants because these ants reduce the density of hyperparasitoids (V6lkl, 1992). The
same occurs with the parasitoid Prionomitus mitratus, which benefits from the ants

Lasius niger and Formica pratensis attending its host, the psyllid Cacopsylla crataegi,
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due to a decrease in hyperparasitism (Novak, 1994). Kaneko (2003a) observed that the
parasitoid Lysiphlebus japonicus suffered less hyperparasitism and predation when its

aphid host Toxoptera citricidus was attended by the ant Pristomyrmex pungens.

(4) Host plant

The host plant where the hemipteran settles and feeds can also modulate the
interactions between trophobiotic ants and parasitoids of phloem-feeding hemipterans.
For example, V6lkl (1997) found that the parasitoid 7rioxys angelicae has a higher
oviposition success in colonies of the aphid Aphis fabae that are attended by ants when
these colonies are on goosefoot (Chenopodium spp.) rather than on creeping thistle
(Cirsium arvense) or spindle bush (Euonymus europaeus). Similarly, Zhou, Kuang &
Gao (2015b) found that the parasitoid Anagyrus babawalei parasitizes more mealybugs
of the species Phenacoccus solenopsis attended by Tapinoma melanocephalum when
the mealybug is settled on tomato (Solanum lycopersicun), rather than on cotton
(Gossypium hirsutum) plants.

How host plants modulate these interactions is poorly known, but there are several
possibilities. First, plant-derived food sources rich in sugars, such as nectar, extrafloral
nectar, or guttation, might compete with hemipterans for the attention of ants (Engel et
al., 2001; Bliithgen, Stork & Fiedler, 2004; Bliithgen & Fiedler, 2004; Del-Claro et al.,
2016; Heil, 2015; Urbaneja-Bernat et al., 2023), and can also supply food to the
interacting parasitoids (Jamont, Crépelliere & Jaloux, 2013). Therefore, plant species
with different types of resources might affect the interaction between ants and
parasitoids in different ways. Similarly, host plants have specific phloem composition
that affects the composition of honeydew excreted by the same hemipteran species

(Fischer & Shingleton, 2001; Fischer, V6lkl & Hoffmann, 2005; Pringle et al., 2014;
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Tena et al., 2018b; Urbaneja-Bernat et al., 2024). As explained in Section V.1,
honeydew composition affects both the number and aggressivity of ants attending
hemipterans (VOlkl et al., 1999; Woodring et al., 2004). Furthermore, the foraging
behaviour of parasitoids is affected by plant volatiles (Pickett & Khan, 2016; Turlings &
Erb, 2018). Interestingly, the presence of trophobiotic ants attending hemipterans can
induce changes in the volatile compounds emitted by plants, which can mediate
parasitoid attraction (Paris, Llusia & Pefiuelas, 2010; Huang et al., 2017). Other factors,
such as plant architecture, may be also important because some plant structures can
serve as refugia for parasitoids against ants (Mackauer & Volkl, 1993).

Even within the same plant, the effect of ants on parasitoids of phloem-feeding
hemipterans might vary depending on the plant organ where the interaction occurs. For
example, the parasitoid Pauesia silvestris suffers lower mortality due to aggression of
the ant Formica polyctena when it searches for the aphid Cinara pineae on pine needles
than for Cinara pini on pine bark (Volkl & Kroupra, 1997). Although there are two
variables here (aphid species and plant organ), Volkl & Kroupa (1997) suggested that
the parasitoid could avoid ant attacks in the pine needles because ants move less easily

on this substrate.

(5) Other factors

The interactions between trophobiotic ants and parasitoids of hemipterans occur in
plants that are part of complex ecosystems modulated by multiple external factors. For
example, surrounding habitats can affect the entire arthropod community of a host plant
(Landis, Wratten & Gurr, 2000; Smith & Schmitz, 2016). While the mutualistic
interaction between ants and hemipterans can be independent of the landscape context

in some ecosystems (Stutz & Entling, 2011), recent studies have revealed that landscape
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composition may have a strong effect on ant—-hemipteran—parasitoid interactions in
others. For example, in urban green spaces in the UK, the abundance of the aphid 4Aphis
fabae feeding on Vicia faba plants was not affected by landscape composition, but
attendance by the ant Lasius niger decreased with habitat diversity, which may result in
a reduced impact of ants on parasitoids (Rocha & Fellowes, 2020). Kulikowski (2020)
found that parasitism of the soft scale Alecanochiton marquesi was negatively affected
by the presence of the trophobiotic ant Wasmannia auropunctata, but only at sites with
high surrounding landscape forest cover. Interestingly, this suggests that habitat-
management strategies on a landscape scale could be used to reduce the impact of ants
on the parasitoids of hemipterans. These habitat-management strategies could also be
applied on a local scale. For example, Blubaugh et al. (2024) found that cover crops can
elicit a shift in the foraging behaviour of the ant Solenopsis invicta in cotton, from
foraging on leaves of cotton plants to foraging on the ground, thus reducing ant
attendance of aphids feeding on cotton plants. Other habitat-management strategies
include providing artificial sugar sources to distract ants from attending hemipterans,
reduce ant aggressivity, and facilitate parasitoid attacks on hemipterans (Wackers et al.,
2017; Chinarelli ef al., 2021; Pérez-Rodriguez et al., 2021; Fernandez de Bobadilla et
al., 2024; Schifani, Giannetti & Grasso, 2024).

In agroecosystems, conventional agronomic practices can also modulate the
impact of trophobiotic ants on parasitoids of phloem-feeding hemipterans. For example,
tillage can have wide effects on arthropod community structure in the host plant
(Sharley, Hoffmann & Thomson, 2008; Patterson, Sanderson & Eyre, 2019). Irrigation
or fertilization both influence the growth and nutritional status of host plants, which in
turn affects the amount and composition of honeydew excreted by hemipterans (Baqui

& Kershaw, 1993; Blua & Toscano, 1994). Critically, the use of insecticides may affect
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hemipterans, parasitoids, ants, and the organisms interacting with them in different ways
(Waage, Hassell & Godfray, 1985; Teder & Knapp, 2019; Calvo-Agudo et al., 2022).

Climatic conditions can also affect ant—-hemipteran mutualisms by altering
hemipteran growth and behaviour, honeydew composition, or semiochemistry
(Blanchard et al., 2019). These conditions can also impact the behaviour of trophobiotic
ants within ant-hemipteran interactions (Barton & Ives, 2014; Mooney et al., 2019). For
example, Barton & Ives (2014) found that warmer temperatures reduced the
aggressivity of winter ants when attending aphids. By contrast, warming can also
strengthen ant-hemipteran mutualisms (Zhou et al., 2017; Nelson et al., 2019). Zhou et
al. (2017) found that the performance of the ant Tapinoma melanocephalum attending
the mealybug Phenacoccus solenopsis, including tending level, aggression, activity, and
honeydew consumption, was enhanced by temperature warming, which might result in
enhanced protection of hemipterans against parasitoids.

Finally, ant-hemipteran—parasitoid dynamics can be altered by the spread of
invasive species. In fact, hemipterans and ants are themselves amongst the most
invasive arthropod species (Bertelsmeier et al., 2015; Liebhold et al., 2024). These
invasions often result in novel interactions between ants and non-coevolved
hemipterans. Ants can rapidly adapt to attend hemipterans with which they have not
coevolved. Thus, invasive hemipterans may compete with resident hemipterans for the
attention of ants, while invasive ants may compete with resident ants to exploit
hemipterans (Tena et al., 2013a; Wang et al., 2021; Plata et al., 2024a, 2025). Such
emerging interactions between non-coevolved ants and hemipterans also represent a
challenge for the parasitoids of hemipterans. For example, the parasitoid Tamarixia
radiata, native to Asia, was imported to California to control the psyllid Diaphorina

citri in citrus, but the presence of the Argentine ant Linepithema humile decreased the
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establishment and efficacy of the parasitoid in urban areas (Milosavljevi¢ et al., 2021).
It is possible that parasitoids may be able to reduce the impact of these non-coevolved
ants, as has been specifically evaluated for some predators of hemipterans (Plata et al.,

2024c). However, these remain to be assessed.

VI. CONCLUSIONS

(1) The interactions between parasitoids of phloem-feeding hemipterans and
trophobiotic ants have evolved over millions of years and are widely distributed both
geographically and phylogenetically. However, research on these interactions is
asymmetric, with a bias towards certain taxa and ecosystems. Most studies have focused
on temperate climates, crop plants, a few aphid species such as Aphis fabae and their
parasitoids, and the ant species Lasius niger. Broadening the range of taxa and
ecosystem types will shed light on how these interactions have shaped the evolution of
phloem-feeding hemipterans, their parasitoids, and trophobiotic ants. We especially
encourage studies of these interactions in natural and semi-natural habitats from tropical
and subtropical ecosystems that are dominated by other phloem-feeding hemipterans,
such as mealybugs, psyllids, or soft scales. This knowledge gap is particularly
significant considering the dominance of canopy-foraging ants in the tropics.

(2) In general, the presence of trophobiotic ants reduces parasitism of phloem-feeding
hemipterans. However, recent findings suggest that the underlying mechanisms are
more complex than expected and still not well understood. For example, while
extensive research has evaluated the direct attacks of trophobiotic ants on adult
parasitoids, very few have assessed their impact on immature parasitoids that may also

be recognized and attacked by ants. Similarly, the role of the ‘ecology of fear’ in these
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697 interactions has been poorly recognized, and may reveal new mechanisms that imply
698  different costs for parasitoids.

699  (3) Parasitoids have evolved a series of behavioural, chemical, and morphological traits
700 that can reduce the impact of trophobiotic ants. The diversity and specificity of these
701  traits suggest that ant attendance may represent an important ecological constraint that
702  led to adaptive radiation in parasitoids of phloem-feeding hemipterans. Multi-trait

703  phylogenetic analyses should explore whether these traits have arisen as a result of
704  selection by trophobiotic ants. In addition, it would be interesting for future studies to
705  evaluate the plasticity of the varied behavioural strategies of parasitoids. Such

706  behavioural plasticity could be critical for the success of parasitoids in future changing
707  environments.

708  (4) Cognitive abilities of both ants and parasitoids may determine the outcome of their
709 interactions. Some parasitoid species learn from ant encounters and adjust their

710  behaviours, and there is ample evidence that the associative learning ability of ants

711 plays a key role in recognizing hemipterans as trophobionts. However, little is known
712  about the innate and learned responses of ants towards the parasitoids of hemipterans.
713  The interactions between ants, mutualistic hemipterans, and their parasitoids, represent
714 an excellent model to study the cognitive ecology of multi-trophic interactions.

715  (5) Microbial endosymbionts of hemipterans can modulate the impact of trophobiotic
716  ants on hemipteran parasitoids. These endosymbionts can affect the composition of
717  honeydew, and the CHC profiles of hemipterans, thereby modulating the chemical

718  communication between ants and hemipterans. Hemipteran endosymbionts may also
719  affect some traits of their parasitoids, including their CHC profiles, which can determine

720  the aggressivity of ants towards them. Recent advances in molecular techniques that
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facilitate the study of microecology could provide important insights into the role of
endosymbionts in these interactions.

(6) The spread of invasive species means bringing together phloem-feeding
hemipterans, trophobiotic ants and parasitoids that do not share an evolutionary history.
Ants can adapt rapidly to attend non-coevolved hemipterans, thus the parasitoids of
these hemipterans will also encounter these ants. However, the mechanisms that allow
parasitoids of hemipterans to adapt to these non-coevolved ants need to be investigated.
We propose that classical biological control programs, where parasitoids are introduced
to control invasive hemipterans, represent useful model systems to study if and how
parasitoids adapt to new trophobiotic ant species.

(7) Knowledge regarding the interactions between trophobiotic ants and parasitoids of
phloem-feeding hemipterans could be used to improve Integrated Pest Management
programs for these hemipterans. For example, recent studies have demonstrated that
different habitat-management strategies can distract ants from attending hemipterans
and reduce their aggressivity toward parasitoids. We suggest that the identification of
parasitoid traits that reduce the impact of trophobiotic ants should be used to select
parasitoid species in augmentative and classical biological control strategies. These
traits could also be considered in genetic breeding programs for parasitoids of phloem-

feeding hemipteran pests.
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1404  Table S1. Studies investigating the interactions between tending ants and parasitoids of
1405  honeydew-producing hemipterans.

1406  Table S2. Effects of trophobiotic ants on parasitoids of phloem-feeding hemipterans.
1407  Table S3. Parameters used in Table S2 to evaluate the effects of ants on parasitoids of

1408  honeydew-feeding hemipterans.
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1417  Fig. 1. Trophobiotic ants can recognize and attack immature and adult parasitoids of
1418  phloem-feeding hemipterans. (A) A Lasius ant approaches an Aphidius parasitoid wasp
1419  attempting to parasitize the aphid Aphis spiraecola. (B) A Lasius ant recognizes a

1420 mummy of Aphis gossypii with an immature parasitoid developing inside.
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Fig. 3. Direct and indirect interactions mediating the effects of trophobiotic ants on
parasitoids of phloem-feeding hemipterans. *Competing parasitoids and competing
hemipterans can belong to the same species (intraspecific competition), or to different
species (interspecific competition). **Competing tending ants can belong to the same
species from a different colony (intraspecific competition) or different species

(interspecific competition). ***Tending ants might also act as predators.
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Fig. 4. Proportion of studies evaluating different ant—parasitoid—hemipteran
interactions, grouped by genus. Different colours represent interactions of each family
of hemipterans (see key at bottom of figure). See Table S2 for summary of results and
search terms used to identify the relevant literature. Full details of the 66 selected
studies are provided in Table S1). The height allocated to each genus is proportional to
the number of studies multiplied by the number of species in each genus for each tri-

trophic interaction. (H) = parasitoid genera that are hyperparasitoids.
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Table 1. Strategies of parasitoids of phloem-feeding hemipterans that may limit/reduce

the impact of trophobiotic ants. Examples of species with each strategy are included.

Strategy e.g. Parasitoid species References
Behavioural strategies

Running Pauesia silvestris, Lysiphlebus Volkl & Kroupa (1997);
Jjaponicus Kaneko (2002)

Jumping Prionomitus mitratus, Aphidius Novak (1994); Hiibner &
aphidivorus, P. aphidis, Asaphes Volkl (1996); Barzman &
vulgaris, Metaphycus spp., Lysiphlebus ~ Daane (2001); Vinson &
testaceipes, Anagyrus pseudococci Scarborough (1991); Tanga

etal. (2015)
Sensitivity of flight Pachyneuron aphidis, Pauesia Volkl & Kroupa (1997);
behaviour silvestris, Asaphes vulgaris, Tryoxis Volkl & Mackauer (1993);

Rapid movements and
reduced host handling time

Rapid oviposition

Non-discriminatory
oviposition
Cryptic movements

Ant-like movements

Learning capacity from
encounters with aggressive
ants

Foraging in sites avoided
by ants

Reduced foraging time in
host patches with ants or
ant cues

Reduced oviposition
attempts in host patches
with ants or ant cues

Mating outside the natal
patch

angelicae, Anagyrus pseudococci,
Aphidius colemani, Alloxysta brevis

Coccidoxenoides perminutus,
Pseudaphycus flavidulus, Metaphycus
aenneckei

Coccidoxenoides perminutus,
Syrphophagus sp., Lysiphlebus
testaceipes, Metaphycus aenneckei,
Aphidus colemani

Coccidoxenoides perminutus

Pachyneuron aphidis, Lysiphlebus
cardui

Lysiphlebus fabarum, Paralipsis
enervis

Pauesia picta, Pauesia. pinicollis

Pauesia silvestris

Lysiphlebus testaceipes, Tryoxis
angelicae, Aenasius bambawalei,
Anagyrus viadimiri, Tamarixia radiata,
Acerophagous sp., Anagyrus lopezi

Anagyrus lopezi, Anagyrus
pseudococci, Acerophagous, Aenasius
babawalei

Pauesia pini

Tanga et al. (2015); Herbert
& Horn (2008), Hiibner
(2000)

Daane et al. (2007); Sime &
Daane (2014); Barzman &
Daane (2001)

Sime & Daane (2014);
Kaneko (2002); Volkl &
Mackauer (1993); Barzman
& Daane (2001); Powell &
Silverman (2010)

Sime & Daane (2014)

Hiibner & Volkl (1996);
Volkl & Mackauer (1993)
Rasekh et al. (2010), Volkl
et al. (1996)

Volkl (2001)

Volkl & Kroupa (1997)

Volkl & Mackauer (1993);
Tanga et al. (2015); Fanani
et al. (2020); Xu et al.
(2020); Mouratidis et al.
(2021); Kistner et al. (2017);
Zhou et al. (2014)

Fanani et al. (2020); Tanga
et al. (2015); Beltra et al.
(2015); Xu et al. (2020);
Sime & Daane (2014)
Mackauer & Volkl (2002);
Nyabuga et al. (2012)

Chemical strategies
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Chemical mimicry of
hemipteran hosts

Chemical mimicry of ants

Secretion of ant-deterrent
substances

Recognition and avoidance
of ant chemicals

Lysiphlebus cardui, Lysiphlebus

fabarum, Lysiphlebus hirticornis,

Lysiphlebus japonicus, Adialytus
arvicola, Paralipsis enervis

Paralipsis eikoae, Paralipsis enervis

Alloxysta spp., Phaenoglyphis spp.

Aenasius babawalei, Anagyrus
viadimiri

Volkl (1992); (1994); Volkl
& Mackauer (1993), Volkl
et al. (1996); Liepert &
Dettner (1993); Hertaeg et
al. (2023); Mackauer &
Volkl (2002); Kaneko
(2002)

Stary (1966); Akino &
Yamoka (1998); Volkl et al.
(1996)

Volkl et al. (1994); Hiibner
(2000); Hiibner et al. (2002)
Xu et al. (2020); Mouratidis
etal. (2021)

Morphological strategies

Increased size and body
hardness

Reduced size
Telescoped abdomen
Myrmecomorphy

Aphidius ervi

Coccidoxenoides perminutus
Protaphidius nawaii
Encyrtus spp., Holcencyrtus spp.

Hiibner & Dettner (2000)

Sime & Daane (2014)
Takada (1983)

Mclver & Stonedahl (1993);
Kelly et al. (2022)
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