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ABSTRACT 12 

Ants and phloem-feeding hemipterans have established one of the most widespread and 13 

best-known mutualisms on Earth. In this mutualism, known as trophobiosis, ants feed 14 

on honeydew excreted by phloem-feeding hemipterans and, in exchange, protect 15 

hemipterans from their antagonists. Parasitoid wasps are among the main groups of 16 

antagonists of phloem-feeding hemipterans. Like trophobiosis, the interaction between 17 

trophobiotic ants and parasitoids of phloem-feeding hemipterans has evolved over 18 

millions of years and is widely distributed both geographically and phylogenetically. 19 

Ants protect phloem-feeding hemipterans from their parasitoids in many different ways, 20 

with outcomes for parasitoids that vary from altered reproduction or development to 21 

death. Consequently, parasitoids have evolved a series of behavioural, chemical, and 22 

morphological adaptations that reduce or limit the impact of trophobiotic ants. Our 23 

review shows that research on these interactions is asymmetric and strongly biased 24 

towards certain taxa and ecosystems, mostly aphids that feed on temperate crops. It will 25 
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be necessary to broaden the range of taxa and ecosystems studied to evaluate how these 26 

interactions have shaped the evolution of phloem-feeding hemipterans, their parasitoids, 27 

and trophobiotic ants. While, in general, the presence of trophobiotic ants reduces the 28 

top-down regulation of phloem-feeding hemipterans by parasitoids, recent findings 29 

suggest that the mechanisms that explain this reduction are more complex than 30 

expected. By reviewing these interactions, the limitations of past research, and the 31 

advantages of current techniques, we provide perspectives to understand: (i) the 32 

mechanisms that ants use to protect hemipterans from parasitoids; (ii) the strategies 33 

evolved by parasitoids to counteract these ants; and (iii) the multiple factors that 34 

modulate the effects of trophobiotic ants on parasitoids of hemipterans. We suggest that 35 

a better understanding of these interactions will improve the management of phloem-36 

feeding hemipterans, which constitute one of the most damaging groups of pests to 37 

global agriculture.  38 
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I. INTRODUCTION 71 

Hemipterans constitute one of the most diverse, ubiquitous, and abundant groups of 72 

herbivorous insects worldwide (Vea & Grimaldi, 2016; Szwedo, 2016). Among this 73 

diverse group of insects, hemipterans that feed on plant phloem cause severe damage to 74 

agriculture and forestry (Gullan & Martin, 2009; Emdem & Harrington, 2017; Kondo & 75 
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Watson, 2022). These include major global pests, such as aphids, whiteflies, scale 76 

insects, and mealybugs. These hemipterans must excrete excess sugar from their phloem 77 

diet, which is sugar-rich but protein-limited (Douglas, 2009; Urbaneja-Bernat et al., 78 

2024). This sugar-rich excretion is called honeydew. A diverse plethora of organisms 79 

feed or develop on honeydew (Way, 1963; Wackers, Van Rijn & Heimpel, 2008; Dhami 80 

et al., 2013; Tena et al., 2016), and it therefore partially drives both the interactions of 81 

hemipterans with other organisms and variation in life histories of phloem-feeding 82 

hemipterans through their interactions with antagonists and mutualists (Styrsky & 83 

Eubanks, 2007; Tena et al., 2016; Pringle, 2021; Fernández de Bobadilla et al., 2024).  84 

Phloem-feeding hemipterans are attacked by different natural enemies including 85 

microorganisms, generalist and oligophagous predators, and oligophagous parasitoids 86 

(Hirose, 2006; Daane et al., 2012; Diehl et al., 2013). Among these, parasitoid wasps 87 

belonging to the order Hymenoptera are likely the most diverse and widespread group 88 

of antagonists of phloem-feeding hemipterans (Labandeira & Li, 2021; Cruaud et al., 89 

2024). These wasps lay eggs inside or on hemipterans and immatures live as parasites 90 

that eventually kill their hosts. Parasitoid wasps are effective top-down regulators of 91 

phloem-feeding hemipterans and, thereby reduce herbivore pressure (Godfray & Müller, 92 

1998; Hirose, 2006; Mills, 2009; Boivin, Hance & Brodeur, 2012; Kapranas & Tena, 93 

2015). However, defensive mechanisms of hemipterans, including chemical, 94 

physiological, morphological, and behavioural, can limit top-down suppression caused 95 

by their parasitoids (Blumberg & Van Driesche, 2001; Villagra, Ramírez & Niemeyer, 96 

2002; Desneux et al., 2009; Le Ralec et al., 2010; Vorburger, 2014; Tena et al., 2018a). 97 

Among these defensive mechanisms, the mutualistic relationships that many phloem-98 

feeding hemipteran species establish with ants is an important constraint for parasitoids 99 

(Hölldobler & Wilson, 1990; Völkl, 1997; Delabie, 2001). 100 
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Ants are among the most abundant arthropods in terrestrial environments and a 101 

prime example of interspecific dominance (Ward, 2014; Parker & Kronauer, 2021). 102 

Several groups of ants have specific adaptations to feed on honeydew excreted by 103 

phloem-feeding hemipterans. These adaptations include the ability to collect, transport, 104 

and share liquid food with nestmates (Ward, 2014; Nelson & Mooney, 2022). In 105 

exchange, these honeydew-feeding ant species attend phloem-feeding hemipterans and 106 

defend them from their natural enemies, including their parasitoids (Fig. 1) (Way, 1963; 107 

Hölldobler & Wilson, 1990; Delabie, 2001). This aggressive behaviour of ants 108 

defending hemipterans is accompanied by specific adaptations of many hemipteran 109 

species that facilitate ant attendance, resulting in one of the most widespread and best-110 

known mutualisms on Earth (Ness, Mooney & Lach, 2010; Nelson & Mooney, 2022). 111 

This ‘food-for-protection’ mutualism, known as trophobiosis, is widely spread 112 

phylogenetically and geographically, and can modulate the arthropod community 113 

structure of many ecosystems, including the abundance and diversity of hemipteran 114 

parasitoids (Styrsky & Eubanks, 2007; Zhang, Zhang & Ma, 2012; Clark et al., 2019). 115 

Despite this widespread mutualism, parasitoids have also evolved a wide range of 116 

adaptations that allow them to exploit their hemipteran hosts even when trophobiotic 117 

ants protect them (Völkl, 1992, 1997; Kaneko, 2002; Daane et al., 2007; Sime & Daane, 118 

2014).  119 

The interactions between trophobiotic ants and parasitoids of phloem-feeding 120 

hemipterans, along with the biotic and abiotic factors that modulate these interactions, 121 

may contribute to explaining the evolutionary success of phloem-feeding hemipterans in 122 

many ecosystems. Ant–hemipteran interactions have been extensively studied and 123 

reviewed (e.g. Styrsky & Eubanks, 2007; Nelson & Mooney, 2022). However, few 124 

works have synthesized the interactions between trophobiotic ants and the parasitoids of 125 
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hemipterans, despite the high impact of parasitoids on hemipterans and the large 126 

number of case studies. Prior reviews on these interactions are restricted to a single 127 

family of hemipterans: the aphids (Stary, 1966; Völkl, 1997). Moreover, recent research 128 

with novel techniques and a higher diversity of ants, parasitoids, and hemipterans has 129 

revealed that the mechanisms that explain the effects of trophobiotic ants in the 130 

regulation of phloem-feeding insects via their parasitoids are more complex than 131 

previously thought. 132 

Herein, we first synthesize the evolutionary history of the interactions between 133 

trophobiotic ants and parasitoids of phloem-feeding hemipterans. We then explain how 134 

ants protect phloem-feeding hemipterans from parasitoids; and how some parasitoid 135 

species have adapted to exploit ant-attended hemipterans. The outcome of these 136 

interactions and the main factors that modulate them are also discussed. We use these 137 

findings to propose future research directions on these interactions, and to discuss 138 

different approaches to enhance the control of phloem-feeding hemipteran pests. 139 

  140 

II. EVOLUTIONARY HISTORY OF THE INTERACTIONS BETWEEN 141 

TROPHOBIOTIC ANTS AND PARASITOIDS OF PHLOEM-FEEDING 142 

HEMIPTERANS  143 

(1) Origin of hemipteran–parasitoid interactions 144 

Hemipterans appeared 330–310 million years ago (Ma) from an herbivorous 145 

ancestor belonging to the order Paraneoptera, which already had specialized mouthparts 146 

for feeding on liquid diets (Nel et al., 2013; Yoshizawa & Lienhard, 2016). Hemipterans 147 

then evolved more specialized mouthparts, known as stylets, that allowed them to reach 148 

phloem vessels of plants (Szwedo, 2016). During this evolutionary process, the order 149 

Hemiptera diversified into three suborders. The suborders Sternorrhyncha and 150 
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Auchenorrhyncha remained specialized in feeding on phloem, while the suborder 151 

Heteroptera evolved predatory habits (Nelson & Mooney, 2022). Most extant clades of 152 

phloem-feeding hemipterans, including those that are major agricultural pests, are found 153 

in the suborder Sternorrhyncha, which appeared around 300 Ma (Drohojowska et al., 154 

2020). The infraorder Aphidomorpha originated in the mid-Permian (around 280 Ma), 155 

Aleyrodomorpha in the Middle Jurassic (around 160 Ma), and Coccidomorpha in the 156 

early Cretaceous (around 140 Ma) (Drohojowska et al., 2020). Sternorrhyncha radiated 157 

rapidly during the Cretaceous, coinciding with the origin of angiosperms (Vea & 158 

Grimaldi, 2016; Hardy, 2018). Some abundant and diverse extant Sternorrhyncha 159 

families such as Pseudococcidae originated before the Mid-Cretaceous (150 Ma), while 160 

others, such as Coccidae and Aphididae, appeared in the Late Cretaceous (100–66 Ma).  161 

The spreading and diversification of phloem-feeding hemipterans was followed 162 

by an increase in abundance and diversity of higher trophic levels. Different clades of 163 

generalist predators and parasitoids gradually evolved into specialists (Labandeira & Li, 164 

2021). Among these, hymenopteran parasitoid wasps reached notable diversity and 165 

abundance (Cruaud et al., 2024), with a radiation that began around 266–195 Ma 166 

(Peters et al., 2017). The oldest records of parasitoids of phloem-feeding hemipterans 167 

can be dated to the Triassic (206 Ma) for representatives of the superfamilies 168 

Ichneumonoidea and Cynipoidea (Blaimer et al., 2023; Labandeira & Li, 2021). In the 169 

Early Cretaceous (145–100 Ma), there was an extensive radiation within the 170 

Hymenoptera, which resulted in the origin of several clades of parasitoids exploiting 171 

phloem-feeding hemipterans, including the superfamilies Ceraphronoidea (family 172 

Megaspilidae) and Chalcidoidea (families Aphelinidae, Calesidae, Idioporidae, 173 

Trichogrammatidae, and Eulophidae) (Cruaud et al., 2024; Blaimer et al., 2023; 174 

Labandeira & Li, 2021; Peters et al., 2017). Many groups of parasitoids of phloem-175 
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feeding hemipterans originated in the Late Cretaceous (100–66 Ma), including the 176 

family Encyrtidae (Chalcidoidea) and the superfamilies Apoidea (family Crabronidae) 177 

and Neostrepsiptera (family Halictophagidae). Parasitoid clades attacking phloem-178 

feeding hemipterans, including most Chalcidoidea families, underwent notable 179 

diversification in Palaeocene (66–56 Ma) and Eocene (56–33.9 Ma) (Cruaud et al., 180 

2024).  181 

 182 

(2) The involvement of ants in hemipteran–parasitoid interactions 183 

Ants originated approximately 160 Ma, primarily exploiting resources from the 184 

ground (Moreau et al., 2006; Vizueta et al., 2025). Ants began foraging in plant 185 

canopies during the Early Cretaceous (about 120 Ma), and different arboreal-foraging 186 

traits emerged following angiosperm diversification in the Late Cretaceous (100–66 187 

Ma) (Nelsen, Ree & Moreau, 2018; Nelson & Mooney, 2022). This process involved a 188 

shift from exclusively predatory behaviour to incorporating plant-based food sources 189 

into their diet. Several extant canopy-foraging ant species, even some that feed on 190 

honeydew, still prey on hemipterans to meet their protein requirements (Sakata, 1994; 191 

Offenberg, 2001). While foraging in plant canopies, ants also began to consume sugary 192 

liquid resources, including plant nectar and honeydew excreted by phloem-feeding 193 

hemipterans. As a result, several clades of ants developed trophallaxis, which is the 194 

collection and sharing of liquid resources with nestmates that do not forage, including 195 

larvae and queens. Trophallaxis allowed ant colonies to become ecologically dominant 196 

(Nelsen et al.,2018; Meurville & LeBoeuf, 2021). Ant–hemipteran trophobiotic 197 

associations occurred as early as the Eocene (56 Ma) (Nelsen et al., 2018). Over the last 198 

50 Ma, different traits evolved in ants in response to ant–hemipteran interactions, such 199 
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as the symbiotic gut bacteria that facilitated further shifts from predatory to honeydew-200 

feeding habits (Davidson et al., 2003; Nelson & Mooney 2022).  201 

While honeydew-feeding ants took advantage of a high-energy food resource, 202 

phloem-feeding hemipterans also benefitted from the exploitation of honeydew by ants. 203 

First, the ants reduced predation on the attended honeydew-producing hemipterans. In 204 

addition, ants evolved behaviours that favoured honeydew-producing hemipterans, 205 

including transportation of hemipterans (Ho & Khoo, 1997), cleaning and sanitizing 206 

(Queiroz & Oliveira, 2001; Nielsen, Agrawal & Hajek, 2010), and protection from 207 

natural enemies (Delabie, 2001; Styrsky & Eubanks, 2007). These ‘food-for-protection’ 208 

interactions, called trophobiosis, extended across multiple clades of ants and phloem-209 

feeding hemipterans to become one of the most widespread mutualisms (Pringle, 2021; 210 

Nelson & Mooney, 2022). This represents an important defensive advantage for 211 

hemipterans attended by ants, which were likely attacked by abundant and diverse 212 

parasitoid wasps when ant–hemipteran trophobiotic associations emerged (Blaimer et 213 

al., 2023; Cruaud et al., 2024).  214 

Ant attendance, however, also has direct and indirect costs for phloem-feeding 215 

hemipterans (Stadler & Dixon, 1998; Yao, Shibao & Akimoto, 2000; Katayama & 216 

Suzuki, 2002). This trade-off may explain why many lineages of phloem-feeding 217 

hemipterans are not tended by ants, and why most ant–hemipteran mutualisms are 218 

facultative (Stadler & Dixon, 1999, 2005). The presence of parasitoids can be critical 219 

for the benefits to outweigh the costs for hemipterans in these interactions. For example, 220 

an increased concentration of melezitose in the excreted honeydew carries a fitness cost 221 

for hemipterans, but this compound attracts ants that can provide services including 222 

reduced mortality from parasitoids (Itioka & Inoue, 1996; Fischer & Shingleton, 223 

2001;Zhou et al., 2015c). Indeed, the rapid expansion and diversification of ant–224 
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hemipteran trophobiotic interactions may have been an important mechanism that 225 

promoted adaptive radiation in the parasitoids of hemipterans in the Eocene. Radiation 226 

of parasitoids of phloem-feeding hemipterans over the last 100 Ma has been linked to 227 

radiations of both angiosperms and hemipterans (Cruaud et al., 2024; Jouault et al., 228 

2025). It is likely, however, that ant attendance also became an important mechanism 229 

promoting the radiation of some groups of hemipterans around 50 Ma due to the 230 

negative impacts of tending ants on parasitoids of phloem-feeding hemipterans in many 231 

different ecosystems. 232 

 233 

III. HOW DO TROPHOBIOTIC ANTS PROTECT PHLOEM-FEEDING 234 

HEMIPTERANS FROM THEIR PARASITOIDS? 235 

Ants protect their mutualistic phloem-feeding hemipterans in several ways. These 236 

protective mechanisms have been widely studied both in the field and under laboratory 237 

conditions (see online Supporting Information, Table S1), and have variable 238 

consequences for the parasitoids, ranging from reduced longevity or fertility to 239 

mortality (Fig. 2).  240 

  241 

(1) Direct mechanisms  242 

(a) Ants attack adult parasitoids 243 

To attack adult parasitoids, ants first need to recognize the parasitoids of phloem-244 

feeding hemipterans using either olfactory, mechanical, or visual cues. Among these 245 

cues, chemical–olfactory signals, such as cuticular hydrocarbons (CHCs) of parasitoids, 246 

are likely the most important (Liepert & Dettner, 1993; Hertaeg et al., 2023). Ants can 247 

also detect volatile alarm cues released by hemipterans when these are attacked by 248 

parasitoids (Verheggen et al., 2012). In addition, previous experience can help 249 
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trophobiotic ants recognize parasitoids as antagonists, as it is assumed for some 250 

predators of hemipterans (Novgorodova, 2015). 251 

Once attending ants recognize the searching parasitoid approaching the colony, 252 

they rapidly approach it and usually tap it with their antennae (Takada & Hashimoto, 253 

1985; Völkl & Mackauer, 1993; Kaneko, 2002; Feng et al., 2015). Afterwards, the ants 254 

typically open their mandibles to seize the parasitoid (Kaneko, 2002; Hübner & Völkl, 255 

1996; Fanani et al., 2020). Most parasitoids tend to flee, but ants can follow (Völkl & 256 

Kroupa, 1997), or capture them with their mandibles (Völkl et al., 1996; Völkl & 257 

Mackauer, 1993; Dejean, Ngriegeu & Borgoin, 1996). Additionally, neighbouring ant 258 

workers can join the pursuit to attack the parasitoid (Völkl et al., 1996; Dejean et al., 259 

1996; Barzman & Daane, 2001). During capture, ants may bite the parasitoid on 260 

different body parts (Hübner & Völkl, 1996; Völkl et al., 1996; Völkl, 1992; 261 

Stechmann, Völkl & Starý, 1996; Tanga et al., 2015; Takada & Hashimoto, 1985; 262 

Barzman & Daane, 2001). Ants sometimes transport the seized parasitoid to their nest 263 

(Dejean et al., 1996). While most studies have observed that ants pursue and bite 264 

parasitoids, none has reported that ants spray formic acid or other compounds against 265 

parasitoids.  266 

Attending ants will attack the adult parasitoid at all stages of its approach: while 267 

recognizing the hemipteran colony using its antennae; laying its egg/s (Heimpel, 268 

Rosenheim & Mangel, 1997; Kaneko, 2003b; Daane et al., 2007; Beltrá, Soto & Tena, 269 

2015; Tanga et al., 2015; Feng et al., 2015; Fanani et al., 2020); or while feeding on 270 

hemipteran haemolymph (host feeding) or honeydew (Chan & Godfray, 1993) (Fig. 2). 271 

If the parasitoid succeeds in parasitizing its host, ants can also attack its offspring when 272 

they emerge. Ants might also attack adult parasitoids when they are resting, searching, 273 

mating or feeding on other resources (e.g. nectar or pollen) on outside the hemipteran 274 
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colony (Vollhardt et al., 2010; Nyabuga et al., 2012; Tanga et al., 2015; Tena, Bouvet & 275 

Abram, 2022). 276 

The consequences of these ant attacks are highly variable for adult parasitoids 277 

(Fig. 2). While captured parasitoids can be severely injured or killed, most parasitoids 278 

jump or fly away to avoid ant attacks (Hübner & Völkl, 1996; Völkl et al., 1996, 1992; 279 

Stechmann et al., 1996; Powell & Silverman, 2010; Feng et al., 2015; Tanga et al., 280 

2015; Tena, Stouthamer & Hoddle, 2017). Even if parasitoids escape, ant attacks can 281 

have a cost for the surviving parasitoid, such as reduction of its current or future 282 

reproductive capacity, or longevity (e.g. Völkl, 1992, 1994; Zhou et al., 2014; Barzman 283 

& Daane, 2001; Martínez-Ferrer, Grafton-Cardwell & Shorey, 2003; Beltrá, Soto & 284 

Tena, 2015; Tena et al., 2017; Fanani et al., 2020). Additionally, ant attacks can affect 285 

the sex ratio of the parasitoid offspring when, because of an attack, female parasitoids 286 

are unable to fertilize their eggs (Tanga et al., 2015). Finally, ant attacks can reduce 287 

parasitoid resting time (Vinson & Scarborough, 1991; Völkl & Novak, 1997), with the 288 

resulting increase in energy consumption potentially reducing parasitoid longevity and 289 

fecundity.  290 

 291 

(b) Ants attack immature parasitoids 292 

Parasitoids of phloem-feeding hemipterans are mainly endoparasitoids 293 

(Labandeira & Li, 2021; Cruaud et al., 2024). This means that their larvae and pupae 294 

develop inside the parasitized hemipteran until they emerge as adults. Interestingly, 295 

some ant species can detect and bite parasitized hemipterans, likely killing the immature 296 

parasitoids (Fig. 2) (Takada, 1983; Vinson & Scarborough, 1991; Tanga et al., 2015; 297 

Plata et al., 2025), although the signals ants use to recognize parasitized hemipterans 298 

remain to be clarified.  299 
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 300 

(2) Indirect mechanisms 301 

The presence of ants tending to hemipterans can deter a searching parasitoid (Fig. 302 

2). Adult parasitoids can detect ants using visual, mechanical, and chemical cues (Dicke 303 

& Grostal, 2001; Xu et al., 2020; Mouratidis et al., 2021). Chemical cues, such as 304 

CHCs of ants, can deter a searching parasitoid even when ants are not attending the 305 

hemipteran colonies (Xu et al., 2020; Mouratidis et al., 2021), which can be considered 306 

as an example of ‘ecology of fear’ (Zanette & Clinchy, 2019). This deterrence may 307 

explain the increased time invested by the adult parasitoid to locate a suitable 308 

hemipteran host when ants are present (e.g. Vinson & Scarborough, 1991; Tanga et al., 309 

2015; Fanani et al., 2020), with a potential cost in terms of energy, longevity and 310 

fecundity. Additionally, ant cues might affect other parasitoid behaviours such as 311 

feeding, mating, or resting in the ant foraging areas.  312 

 313 

IV. COUNTERSTRATEGIES OF PARASITOIDS  314 

Parasitoids of phloem-feeding hemipterans have evolved behavioural, chemical, 315 

and morphological traits that can reduce or limit the impact of trophobiotic ants (Table 316 

1). While many of these adaptations include generalist responses to avoid attacks from 317 

ants or other organisms, others, such as chemical mimicry, are highly specific. In a few 318 

cases, these adaptations of parasitoids even allow them to benefit from the presence of 319 

ants. 320 

 321 

(1) Behavioural strategies 322 

Adult parasitoids run, jump, or fly away to escape from antagonists, including 323 

ants (e.g. Novak, 1994; Barzman & Daane, 2001; Herbert & Horn, 2008) (Table 1). In 324 
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addition to these generalist behaviours, some parasitoid species show better adaptations 325 

to trophobiotic ants and move quickly or parasitize faster to avoid their attacks. These 326 

species may increase their success in the presence of trophobiotic ants because of 327 

reduced competition or intraguild predation (Barzman & Daane, 2001; Daane et al., 328 

2007; Powell & Silverman, 2010; Zhou et al., 2014; Kistner et al., 2017; Xu et al., 329 

2020; Mouratidis et al., 2021). For example, the mealybug parasitoid Pseudaphycus 330 

flavidulus is able to parasitize in the presence of tending ants, while the parasitoid 331 

Leptomastix epona, which moves more slowly while handling its host, can be attacked 332 

and killed by ants before it is able to oviposit (Daane et al., 2007). Coccidoxenoides 333 

perminutus, another mealybug parasitoid, has rapid and non-discriminatory oviposition 334 

behaviour which enables it to be less affected by tending ants than slower-ovipositing 335 

mealybug parasitoids such as Anagyrus pseudococci (Sime & Daane, 2014). 336 

Metaphycus hageni, a soft scale parasitoid with a long handling time and slow 337 

oviposition, is unable to parasitize its host when it is ant-attended. Other Metaphycus 338 

species with shorter oviposition time are more successful (Barzman & Daane, 2001). 339 

Parasitoid species that perform other activities, such as mating or feeding, faster might 340 

have a higher likelihood of success in the presence of aggressive ants, although these 341 

traits have not been evaluated.  342 

Some species of hemipteran parasitoids perform cryptic movements (i.e. 343 

inconspicuous movement by walking slowly) or show ant-like locomotory behaviour 344 

(e.g. ant-like antennation). These behaviours may reduce ant detection and/or 345 

aggression, but may also function to deceive other potential antagonists or to reduce 346 

defensive behaviours of hemipterans (Hübner & Völkl, 1996; Rasekh et al., 2010). 347 

Another parasitoid strategy to defeat ants is to forage in areas where ants move less 348 

effectively, where it is harder for them to capture parasitoids (Völkl & Kroupa, 1997). 349 
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Some parasitoid species detect ant cues and use this to reduce their exposure to 350 

trophobiotic ants (e.g. Zhou et al., 2014; Sime & Daane, 2014; Beltrá et al., 2015). Ant-351 

avoidance might also explain why some parasitoid species forage and mate outside their 352 

natal patch (Mackauer & Völkl, 2002; Nyabuga et al., 2012). Future research could also 353 

investigate whether parasitoids of hemipterans search for hosts when ants are less 354 

active. For example, during hot Mediterranean summers, the trophobiotic ant species 355 

Lasius grandis reduces hemipteran attendance at noon, and parasitoids might use this 356 

window to attack their hemipteran hosts (Pekas et al., 2011).  357 

Finally, the ability of parasitoids to learn may also modulate the effects of 358 

trophobiotic ants (Giunti et al., 2015). Some parasitoid species can learn from 359 

encounters with trophobiotic ants and modify their behaviour accordingly. For example, 360 

naïve females of the aphid parasitoids Pauesia picta and Pauesia pinicollis flee when 361 

encountering an ant. However, after non-aggressive ant encounters, experienced female 362 

parasitoids change their behaviour by approaching ants from the side and at an 363 

increased distance. These experienced females have a higher oviposition rate than naïve 364 

females or females searching for an unattended host (Völkl 2001).  365 

 366 

(2) Chemical strategies 367 

In general, ants have high sensitivity to chemical cues, and many organisms use 368 

chemical signals to deceive them (Akino, 2008). Some parasitoids of phloem-feeding 369 

hemipterans use chemical mimicry (e.g. a CHC profile similar to that of their 370 

hemipteran hosts) to avoid detection by tending ants or to reduce ant aggressiveness 371 

(Hübner & Völkl, 1996; Völkl, 1997) (Table 1). Host chemical mimicry has been 372 

studied in aphid parasitoids of the genus Lysiphlebus, which are often not attacked by 373 

trophobiotic ants of the genera Lasius and Myrmica (Völkl, 1992, 1994; Völkl & 374 
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Mackauer, 1993; Liepert & Dettner, 1993, 1996; Hertaeg et al., 2023). Alternatively, 375 

other parasitoid species possess a CHC profile similar to that of ant larvae. This has 376 

been observed in two species of parasitoids of root aphids belonging to genus Paralipsis 377 

(Takada & Hashimoto, 1985; Völkl et al., 1996; Akino & Yamaoka, 1998). Paralipsis 378 

parasitoids wrongly identified as ant larvae are carried by ant workers to their colony 379 

and fed through trophallaxis. By rubbing the ants, parasitoids acquire the specific odour 380 

of the ant colony. Outside the colony, this odour allows them to parasitize their aphid 381 

hosts without being attacked by workers from the ant colony they have lived with. It has 382 

been observed that parasitoids with chemical mimicry strategies that allow them to 383 

avoid being attacked by ants prefer to forage in ant-attended patches (Völkl, 1994; 384 

Akino & Yamaoka, 1998). 385 

Another strategy of parasitoids is to release ant deterrents (Völkl, Hübner & 386 

Detner, 1994; Hübner, 2000). Females of the aphid hyperparasitoid Alloxysta brevis 387 

release a mandibular secretion containing actinidin and other compounds in response to 388 

an ant attack. This secretion functions both in self-defence if the female is seized by an 389 

ant worker, by acting a repellent, and prevents ant attacks during subsequent encounters 390 

(Völkl et al., 1994). Hübner et al. (2002) found these mandibular gland secretions to be 391 

present in many alloxystine parasitoids belonging the genera Alloxysta and 392 

Phaenoglyphis, including species of parasitoids whose hemipteran hosts are not 393 

attended by ants. They found that the released compounds were also deterrent to other 394 

parasitoid antagonists such as spiders (Hübner & Dettner, 2000), implying that this 395 

defensive mechanism is not ant specific. Although the release of defensive chemicals is 396 

common among other natural enemies of hemipterans, such as predatory coccinellids 397 

(Majerus et al., 2007; Plata et al., 2024c), for hemipteran parasitoids it has only been 398 

demonstrated in alloxystine wasps. Ant-deterrent chemicals have been identified in 399 
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parasitoids of flies, such as the figitid Leptopilina heterotoma (Stökl et al., 2012). This 400 

strategy may be widespread but remains to be investigated for most parasitoids.  401 

 402 

 (3) Morphological adaptations 403 

The morphology of parasitoids can also play a key role against ants. For example, 404 

features of parasitoids such as body hardness and shape can also vary among species. 405 

One study showed that the body of the parasitoid Aphidius ervi can survive greater 406 

pressures than that of smaller parasitoids such as Lysiphlebus cardui and Aphidius 407 

rhopalosiphi (Hübner & Dettner, 2000). This increased hardness translated into lower 408 

mortality when the parasitoids were attacked by a spider, although it was not evaluated 409 

against ants. On the other hand, the small size of some parasitoids, such as 410 

Coccidoxenoides, has been postulated as a morphological adaptation to reduce detection 411 

by ants (Sime & Daane, 2014). Other morphological traits, such as the tubiform and 412 

telescoped abdomen found in female parasitoids of the genus Protaphidius, have also 413 

been associated with ants. Protaphidius parasitoids are specialized to Stomaphis aphids 414 

that live in bark crevices and are always attended by ants. It has been suggested that this 415 

telescoped abdomen may serve not only to reach the aphids in deep crevices of the bark, 416 

but also to oviposit from behind the attending ants (Takada, 1983). Furthermore, 417 

myrmecomorphy, a morphological resemblance to ants, is known from several 418 

parasitoids of phloem-feeding hemipterans (Table 1). For example, Encyrtus and 419 

Holcencyrtus resemble ants by either an absence of wings or camouflaging them 420 

(McIver & Stonedahl, 1993; Kelly et al., 2022). Although these visual signals might not 421 

deceive ants because they typically use chemosensation (Jackson & Ratnieks, 2006), an 422 

ant-like appearance may benefit parasitoids against other antagonists, such as intraguild 423 

predators (Malcicka et al., 2015).  424 
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 425 

V. FACTORS MODULATING INTERACTIONS BETWEEN TROPHOBIOTIC 426 

ANTS AND PARASITOIDS OF PHLOEM-FEEDING HEMIPTERANS 427 

The outcome of interactions between trophobiotic ants and parasitoids of phloem-428 

feeding hemipterans will depend on traits of hemipterans, ants, and parasitoids, which 429 

may vary both inter- and intraspecifically (Table S2; see Table S3 for definitions of each 430 

measure). Furthermore, various external biotic and abiotic factors can modulate ant–431 

hemipteran–parasitoid interactions (Fig. 3).  432 

 433 

(1) Hemipteran host 434 

The effects of trophobiotic ants on parasitoids of phloem-feeding hemipterans 435 

have been studied in 45 hemipteran species, belonging to 30 genera and ten families 436 

(Fig. 4). Most of studies focus on a few aphid species, mainly Aphis fabae, that 437 

dominate in temperate ecosystems; the number of studies on hemipteran families that 438 

dominate in tropical ecosystems is much lower (Vilcinskas, 2016; Kondo & Watson, 439 

2022). This lack of knowledge is particularly important because hemipteran-tending 440 

ants dominate plant canopies in the tropics (Davidson & Patrell-Kim, 1996; Blüthgen et 441 

al., 2000).  442 

The general pattern is that ants have negative effects on parasitoidss of 443 

hemipterans, but these effects depend on the species of hemipteran that ants attend 444 

(Table S2). This is likely because the number of tending ants per hemipteran (i.e. 445 

relative ant attendance) and their aggressivity depends on the quantity and quality of the 446 

honeydew excreted (Völkl et al., 1999; Woodring et al., 2004; Völkl & Novak, 1997; 447 

Pekas et al., 2011; Tena, Hoddle & Hoddle, 2013a; Plata et al., 2024b, 2025), and both 448 

quantity and quality vary inter- and intraspecifically among hemipterans (Detrain et al., 449 
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2010; Vantaux et al., 2011; Katayama et al., 2013; Hogervorst, Wäckers & Romeis, 450 

2017; Tena, Llácer & Urbaneja 2013b, Tena et al., 2018b; Urbaneja-Bernat et al., 2024). 451 

In addition to honeydew nutritional value, hemipteran specific semiochemicals such as 452 

pheromones, CHCs, and volatiles produced by honeydew bacteria, mediate location, 453 

recognition, selection and learning by mutualistic ants (Xu & Chen, 2021). For instance, 454 

some hemipterans produce CHCs that resemble those of tending ants, which may inhibit 455 

ant aggression and induce ant attendance (Endo & Itino, 2013). Thus, ant attendance is 456 

highly variable among hemipteran species, from hemipterans that are obligate ant-457 

mutualists, such as the aphid tribe Fordini, to those that are not attended by ants, such as 458 

the aphid Brachycaudus mimeuri (Depa et al., 2020). 459 

Importantly, the ant-attention received by a hemipteran and the aggressiveness of 460 

ants protecting it are also modulated by the presence and abundance of neighbouring 461 

honeydew-producing hemipterans both at the intra- and interspecific levels. On some 462 

plants, different hemipteran species can share ants from the same nest and compete for 463 

their attendance at low ant densities (Cushman & Addicott, 1989; Cushman & Whitham, 464 

1991; Woodring et al., 2004; Pekas et al., 2011; Tena, 2013b). For example, in the 465 

Mediterranean region, mealybugs infesting citrus trees are highly attended by dominant 466 

trophobiotic ants that do not attend aphids or whiteflies when mealybugs are present 467 

(Pekas et al., 2011; Tena et al., 2013a). Hemipterans also compete for ant-attention 468 

intraspecifically, and individuals that excrete a lower quality or amount of honeydew 469 

may not be attended and may even be predated by ants (Cushman & Addicott, 1989; 470 

Sakata, 1994; Vantaux et al., 2011; Matsuura et al., 2025). Interestingly, hemipteran 471 

traits facilitating ant attendance can also indirectly affect parasitoids in various ways. 472 

For example, an improvement in the quality of honeydew, or the development of 473 
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structures that retain rather than expel honeydew, would benefit both tending ants and 474 

also parasitoids that feed on honeydew (Tena et al., 2016).  475 

Another important factor modulating the effect of ants on parasitoids is the size of 476 

the hemipteran colony attended by ants. Several studies suggest that the effects of ants 477 

on parasitoids is enhanced as hemipteran colony size increases (Völkl, 1994; Itioka & 478 

Inoue, ). This is likely because larger colonies of hemipterans are more attractive to ants 479 

and, therefore, have a higher probability of ant attendance and a higher number of 480 

tending ants (absolute ant attendance) (Plata et al., 2024b, 2025). By contrast, the 481 

ant:hemipteran ratio (relative ant attendance) is higher in smaller attended colonies. 482 

Therefore, although the likelihood of being attended by ants increases with hemipteran 483 

colony size, individuals in smaller attended colonies may be better protected (Breton & 484 

Addicott, 1992; Harmon & Andow, 2007). 485 

Finally, microbial endosymbionts of hemipterans, which can vary extensively 486 

among species but also intraspecifically, can influence many ecologically relevant traits 487 

of their hosts (Olivier et al., 2010). Some of these endosymbionts can provide 488 

protection for hemipterans against their parasitoids. Interestingly, the presence of 489 

tending ants may reduce the abundance of these defensive endosymbionts of 490 

hemipterans (Mandrioli et al., 2016). These endosymbionts also can indirectly modulate 491 

the impact of trophobiotic ants on the parasitoids of hemipterans. First, they can 492 

modulate the attraction of ants because they can affect the composition of honeydew 493 

and thus its volatiles (Schillewaert et al., 2017). Second, endosymbionts can affect the 494 

CHC profile of hemipterans that is used by ants for trophobiont recognition (Hertaeg et 495 

al., 2021). This may have important implications for the establishment of mutualisms 496 

between ants and hemipterans. Strikingly, the CHCs of hemipteran hosts may also affect 497 
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the CHC profiles of parasitoids and the aggressiveness of ants towards them (Hertaeg et 498 

al., 2023). 499 

 500 

(2) Trophobiotic ant 501 

The effects of trophobiotic ants on parasitoids of hemipterans have been evaluated 502 

in 40 ant species belonging to 18 different genera, with Lasius being the most studied 503 

genus in terms of both the number of species the number of studies (Fig. 4; Table S2). 504 

Some trophobiotic ant species are more aggressive than others when they attend to 505 

hemipterans (Buckley & Gullan, 1991; Stechmann et al., 1996; Hübner & Völkl, 1996; 506 

Hübner, 2000; Kaneko, 2007), and aggressiveness may determine their impact on 507 

parasitoids of hemipterans (Buckley & Gullan 1991). For example, Lasius niger is more 508 

aggressive than Pristomyrmex pungens against the aphid parasitoid Lysiphphlebus 509 

japonicus (Kaneko, 2003b). Similarly, the parasitoid Anagyrus lopezi is more affected 510 

by the ant Oecophylla smaragdina than by Anoplolepis gracilipes or Dolichoderus 511 

thoracicus, which are less aggressive, when the parasitoid attacks the cassava mealybug 512 

Phenacoccus manihoti (Fanani et al., 2020). Both the number of tending ants and their 513 

aggressiveness in defending hemipterans from parasitoids can also be strongly 514 

influenced by seasonality. This is because the nutritional demands of ants change 515 

throughout the year, leading to significant dietary shifts across seasons (Mooney & 516 

Tillberg, 2005). 517 

The behavioural responses of ants toward hemipterans and their parasitoids also 518 

depends on the ability of ants to recognize hemipterans as trophobiont partners and their 519 

parasitoids as antagonists. This cognitive ability may vary considerably among ants and 520 

can be both innate and based on previous experience. For example, some ant species can 521 

innately recognize long-chain CHCs produced by certain hemipterans (Endo & Itino, 522 
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2013; Salazar et al., 2015). Ants also leave their own CHCs on the attended 523 

hemipterans, resulting in reduced aggression from ant nestmates towards these ‘marked’ 524 

hemipterans (Sakata, 1994; Endo & Itino, 2012; Foronda et al., 2025). Furthermore, 525 

ants are exceptionally skilled at associating scents with food rewards (e.g. Huber & 526 

Knaden, 2018; Czaczkes & Kumar, 2020). Different ant species, including Linepithema 527 

humile, Pristomyrmex punctatus, Tetramorium tsushimae, and Lasius niger, can learn to 528 

associate the CHCs of hemipterans with a honeydew reward (Choe & Rust, 2006; Hojo 529 

et al., 2014; Hayashi, Nakamuta & Nomura, 2015; Hertaeg et al., 2021). Trophobiotic 530 

ant species with higher learning capacity therefore might establish new trophobiotic 531 

relationships with non-coevolved hemipterans more easily (Plata et al., 2024b, 2025). 532 

Similarly, the aggressiveness of ants towards the natural enemies of hemipterans can be 533 

innate (Novgorodova, 2015; Dorosheva, Yakovlev & Reznikova, 2011), but experience 534 

may also play a role in the recognition of antagonists by some ant species (Hollis et al., 535 

2017). The variability of innate versus learned responses towards the parasitoids of 536 

hemipterans among different ant species remains to be evaluated. 537 

Other ant traits might modulate their impact on the parasitoids of hemipterans. For 538 

example, traits that facilitate resource monopolization by ants, such as increased colony 539 

size, polydomy (i.e. the ability to establish nests in various locations), or polygyny (i.e. 540 

several queens in the nest, which is associated with lower intraspecific aggression), have 541 

been linked to higher ant-attendance levels of hemipterans (Blüthgen & Fiedler 2004; 542 

Oliver, Leather & Cook, 2008; Nelson & Mooney, 2022). 543 

 544 

(3) Parasitoid 545 

The effects of ants on parasitoids of hemipterans have been specifically evaluated 546 

in 86 different parasitoid species (Table S2). Most studied parasitoid species are primary 547 
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parasitoids, while the impact of ants on a few hyperparasitoids has been studied 548 

particularly for some aphid hosts such as Aphis fabae (Fig. 4; Table S2). A variety of 549 

chemical, morphological and behavioural traits of parasitoids modulate their 550 

interactions with trophobiotic ants and some of these traits are species specific (see 551 

Section IV). As illustrative examples, Barzman & Daane (2001) found that different 552 

species of parasitoids of the same genus respond differently when they attack the soft 553 

scale Saissetia oleae that it is tended by the Argentine ant Linepithema humile. Unlike 554 

Metaphycus anneckei, Metaphycus hageni is unable to parasitize S. oleae when it was 555 

attended by ants. The authors suggested that this is likely because M. anneckei needs 556 

less handling and oviposition time and, therefore, can escape before the ants attack. 557 

Likewise, Liepert & Dettner (1993) found that the ant Lasius niger is aggressive 558 

towards the aphid parasitoid Trioxys angelicae, but the parasitoid Lysiphlebus cardui, 559 

which possesses aphid-like CHCs, is not treated aggressively. Furthermore, genotypic 560 

variation can explain intraspecific variability of parasitoids facing trophobiotic ants. 561 

Using different lines of the parasitoid Lysiphlebus fabarum, Hertaeg et al. (2023) 562 

showed that the genotype affected parasitoid CHC profiles and aggression by the ant L. 563 

niger.  564 

Ants can also negatively affect parasitoid antagonists, including parasitoid 565 

predators (Kaneko, 2003a, 2007), competing parasitoids, and hyperparasitoids (Völkl, 566 

1992; Hübner & Völkl, 1996). Therefore, some parasitoid species may benefit indirectly 567 

from an enemy-free space created by tending ants. For example, the parasitoid 568 

Lysiphlebus cardui benefits indirectly when its host Aphis fabae is attended by Lasius 569 

niger ants because these ants reduce the density of hyperparasitoids (Völkl, 1992). The 570 

same occurs with the parasitoid Prionomitus mitratus, which benefits from the ants 571 

Lasius niger and Formica pratensis attending its host, the psyllid Cacopsylla crataegi, 572 
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due to a decrease in hyperparasitism (Novak, 1994). Kaneko (2003a) observed that the 573 

parasitoid Lysiphlebus japonicus suffered less hyperparasitism and predation when its 574 

aphid host Toxoptera citricidus was attended by the ant Pristomyrmex pungens.  575 

 576 

(4) Host plant 577 

The host plant where the hemipteran settles and feeds can also modulate the 578 

interactions between trophobiotic ants and parasitoids of phloem-feeding hemipterans. 579 

For example, Völkl (1997) found that the parasitoid Trioxys angelicae has a higher 580 

oviposition success in colonies of the aphid Aphis fabae that are attended by ants when 581 

these colonies are on goosefoot (Chenopodium spp.) rather than on creeping thistle 582 

(Cirsium arvense) or spindle bush (Euonymus europaeus). Similarly, Zhou, Kuang & 583 

Gao (2015b) found that the parasitoid Anagyrus babawalei parasitizes more mealybugs 584 

of the species Phenacoccus solenopsis attended by Tapinoma melanocephalum when 585 

the mealybug is settled on tomato (Solanum lycopersicun), rather than on cotton 586 

(Gossypium hirsutum) plants.  587 

How host plants modulate these interactions is poorly known, but there are several 588 

possibilities. First, plant-derived food sources rich in sugars, such as nectar, extrafloral 589 

nectar, or guttation, might compete with hemipterans for the attention of ants (Engel et 590 

al., 2001; Blüthgen, Stork & Fiedler, 2004; Blüthgen & Fiedler, 2004; Del-Claro et al., 591 

2016; Heil, 2015; Urbaneja-Bernat et al., 2023), and can also supply food to the 592 

interacting parasitoids (Jamont, Crépellière & Jaloux, 2013). Therefore, plant species 593 

with different types of resources might affect the interaction between ants and 594 

parasitoids in different ways. Similarly, host plants have specific phloem composition 595 

that affects the composition of honeydew excreted by the same hemipteran species 596 

(Fischer & Shingleton, 2001; Fischer, Völkl & Hoffmann, 2005; Pringle et al., 2014; 597 
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Tena et al., 2018b; Urbaneja-Bernat et al., 2024). As explained in Section V.1, 598 

honeydew composition affects both the number and aggressivity of ants attending 599 

hemipterans (Völkl et al., 1999; Woodring et al., 2004). Furthermore, the foraging 600 

behaviour of parasitoids is affected by plant volatiles (Pickett & Khan, 2016; Turlings & 601 

Erb, 2018). Interestingly, the presence of trophobiotic ants attending hemipterans can 602 

induce changes in the volatile compounds emitted by plants, which can mediate 603 

parasitoid attraction (Paris, Llusia & Peñuelas, 2010; Huang et al., 2017). Other factors, 604 

such as plant architecture, may be also important because some plant structures can 605 

serve as refugia for parasitoids against ants (Mackauer & Völkl, 1993).  606 

Even within the same plant, the effect of ants on parasitoids of phloem-feeding 607 

hemipterans might vary depending on the plant organ where the interaction occurs. For 608 

example, the parasitoid Pauesia silvestris suffers lower mortality due to aggression of 609 

the ant Formica polyctena when it searches for the aphid Cinara pineae on pine needles 610 

than for Cinara pini on pine bark (Völkl & Kroupra, 1997). Although there are two 611 

variables here (aphid species and plant organ), Völkl & Kroupa (1997) suggested that 612 

the parasitoid could avoid ant attacks in the pine needles because ants move less easily 613 

on this substrate.  614 

 615 

(5) Other factors 616 

The interactions between trophobiotic ants and parasitoids of hemipterans occur in 617 

plants that are part of complex ecosystems modulated by multiple external factors. For 618 

example, surrounding habitats can affect the entire arthropod community of a host plant 619 

(Landis, Wratten & Gurr, 2000; Smith & Schmitz, 2016). While the mutualistic 620 

interaction between ants and hemipterans can be independent of the landscape context 621 

in some ecosystems (Stutz & Entling, 2011), recent studies have revealed that landscape 622 
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composition may have a strong effect on ant–hemipteran–parasitoid interactions in 623 

others. For example, in urban green spaces in the UK, the abundance of the aphid Aphis 624 

fabae feeding on Vicia faba plants was not affected by landscape composition, but 625 

attendance by the ant Lasius niger decreased with habitat diversity, which may result in 626 

a reduced impact of ants on parasitoids (Rocha & Fellowes, 2020). Kulikowski (2020) 627 

found that parasitism of the soft scale Alecanochiton marquesi was negatively affected 628 

by the presence of the trophobiotic ant Wasmannia auropunctata, but only at sites with 629 

high surrounding landscape forest cover. Interestingly, this suggests that habitat-630 

management strategies on a landscape scale could be used to reduce the impact of ants 631 

on the parasitoids of hemipterans. These habitat-management strategies could also be 632 

applied on a local scale. For example, Blubaugh et al. (2024) found that cover crops can 633 

elicit a shift in the foraging behaviour of the ant Solenopsis invicta in cotton, from 634 

foraging on leaves of cotton plants to foraging on the ground, thus reducing ant 635 

attendance of aphids feeding on cotton plants. Other habitat-management strategies 636 

include providing artificial sugar sources to distract ants from attending hemipterans, 637 

reduce ant aggressivity, and facilitate parasitoid attacks on hemipterans (Wäckers et al., 638 

2017; Chinarelli et al., 2021; Pérez-Rodríguez et al., 2021; Fernández de Bobadilla et 639 

al., 2024; Schifani, Giannetti & Grasso, 2024).  640 

In agroecosystems, conventional agronomic practices can also modulate the 641 

impact of trophobiotic ants on parasitoids of phloem-feeding hemipterans. For example, 642 

tillage can have wide effects on arthropod community structure in the host plant 643 

(Sharley, Hoffmann & Thomson, 2008; Patterson, Sanderson & Eyre, 2019). Irrigation 644 

or fertilization both influence the growth and nutritional status of host plants, which in 645 

turn affects the amount and composition of honeydew excreted by hemipterans (Baqui 646 

& Kershaw, 1993; Blua & Toscano, 1994). Critically, the use of insecticides may affect 647 



27 
 

hemipterans, parasitoids, ants, and the organisms interacting with them in different ways 648 

(Waage, Hassell & Godfray, 1985; Teder & Knapp, 2019; Calvo-Agudo et al., 2022). 649 

Climatic conditions can also affect ant–hemipteran mutualisms by altering 650 

hemipteran growth and behaviour, honeydew composition, or semiochemistry 651 

(Blanchard et al., 2019). These conditions can also impact the behaviour of trophobiotic 652 

ants within ant–hemipteran interactions (Barton & Ives, 2014; Mooney et al., 2019). For 653 

example, Barton & Ives (2014) found that warmer temperatures reduced the 654 

aggressivity of winter ants when attending aphids. By contrast, warming can also 655 

strengthen ant–hemipteran mutualisms (Zhou et al., 2017; Nelson et al., 2019). Zhou et 656 

al. (2017) found that the performance of the ant Tapinoma melanocephalum attending 657 

the mealybug Phenacoccus solenopsis, including tending level, aggression, activity, and 658 

honeydew consumption, was enhanced by temperature warming, which might result in 659 

enhanced protection of hemipterans against parasitoids. 660 

Finally, ant–hemipteran–parasitoid dynamics can be altered by the spread of 661 

invasive species. In fact, hemipterans and ants are themselves amongst the most 662 

invasive arthropod species (Bertelsmeier et al., 2015; Liebhold et al., 2024). These 663 

invasions often result in novel interactions between ants and non-coevolved 664 

hemipterans. Ants can rapidly adapt to attend hemipterans with which they have not 665 

coevolved. Thus, invasive hemipterans may compete with resident hemipterans for the 666 

attention of ants, while invasive ants may compete with resident ants to exploit 667 

hemipterans (Tena et al., 2013a; Wang et al., 2021; Plata et al., 2024a, 2025). Such 668 

emerging interactions between non-coevolved ants and hemipterans also represent a 669 

challenge for the parasitoids of hemipterans. For example, the parasitoid Tamarixia 670 

radiata, native to Asia, was imported to California to control the psyllid Diaphorina 671 

citri in citrus, but the presence of the Argentine ant Linepithema humile decreased the 672 
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establishment and efficacy of the parasitoid in urban areas (Milosavljević et al., 2021). 673 

It is possible that parasitoids may be able to reduce the impact of these non-coevolved 674 

ants, as has been specifically evaluated for some predators of hemipterans (Plata et al., 675 

2024c). However, these remain to be assessed. 676 

 677 

VI. CONCLUSIONS 678 

(1) The interactions between parasitoids of phloem-feeding hemipterans and 679 

trophobiotic ants have evolved over millions of years and are widely distributed both 680 

geographically and phylogenetically. However, research on these interactions is 681 

asymmetric, with a bias towards certain taxa and ecosystems. Most studies have focused 682 

on temperate climates, crop plants, a few aphid species such as Aphis fabae and their 683 

parasitoids, and the ant species Lasius niger. Broadening the range of taxa and 684 

ecosystem types will shed light on how these interactions have shaped the evolution of 685 

phloem-feeding hemipterans, their parasitoids, and trophobiotic ants. We especially 686 

encourage studies of these interactions in natural and semi-natural habitats from tropical 687 

and subtropical ecosystems that are dominated by other phloem-feeding hemipterans, 688 

such as mealybugs, psyllids, or soft scales. This knowledge gap is particularly 689 

significant considering the dominance of canopy-foraging ants in the tropics. 690 

(2) In general, the presence of trophobiotic ants reduces parasitism of phloem-feeding 691 

hemipterans. However, recent findings suggest that the underlying mechanisms are 692 

more complex than expected and still not well understood. For example, while 693 

extensive research has evaluated the direct attacks of trophobiotic ants on adult 694 

parasitoids, very few have assessed their impact on immature parasitoids that may also 695 

be recognized and attacked by ants. Similarly, the role of the ‘ecology of fear’ in these 696 
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interactions has been poorly recognized, and may reveal new mechanisms that imply 697 

different costs for parasitoids. 698 

(3) Parasitoids have evolved a series of behavioural, chemical, and morphological traits 699 

that can reduce the impact of trophobiotic ants. The diversity and specificity of these 700 

traits suggest that ant attendance may represent an important ecological constraint that 701 

led to adaptive radiation in parasitoids of phloem-feeding hemipterans. Multi-trait 702 

phylogenetic analyses should explore whether these traits have arisen as a result of 703 

selection by trophobiotic ants. In addition, it would be interesting for future studies to 704 

evaluate the plasticity of the varied behavioural strategies of parasitoids. Such 705 

behavioural plasticity could be critical for the success of parasitoids in future changing 706 

environments. 707 

(4) Cognitive abilities of both ants and parasitoids may determine the outcome of their 708 

interactions. Some parasitoid species learn from ant encounters and adjust their 709 

behaviours, and there is ample evidence that the associative learning ability of ants 710 

plays a key role in recognizing hemipterans as trophobionts. However, little is known 711 

about the innate and learned responses of ants towards the parasitoids of hemipterans. 712 

The interactions between ants, mutualistic hemipterans, and their parasitoids, represent 713 

an excellent model to study the cognitive ecology of multi-trophic interactions. 714 

(5) Microbial endosymbionts of hemipterans can modulate the impact of trophobiotic 715 

ants on hemipteran parasitoids. These endosymbionts can affect the composition of 716 

honeydew, and the CHC profiles of hemipterans, thereby modulating the chemical 717 

communication between ants and hemipterans. Hemipteran endosymbionts may also 718 

affect some traits of their parasitoids, including their CHC profiles, which can determine 719 

the aggressivity of ants towards them. Recent advances in molecular techniques that 720 
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facilitate the study of microecology could provide important insights into the role of 721 

endosymbionts in these interactions. 722 

(6) The spread of invasive species means bringing together phloem-feeding 723 

hemipterans, trophobiotic ants and parasitoids that do not share an evolutionary history. 724 

Ants can adapt rapidly to attend non-coevolved hemipterans, thus the parasitoids of 725 

these hemipterans will also encounter these ants. However, the mechanisms that allow 726 

parasitoids of hemipterans to adapt to these non-coevolved ants need to be investigated. 727 

We propose that classical biological control programs, where parasitoids are introduced 728 

to control invasive hemipterans, represent useful model systems to study if and how 729 

parasitoids adapt to new trophobiotic ant species.  730 

(7) Knowledge regarding the interactions between trophobiotic ants and parasitoids of 731 

phloem-feeding hemipterans could be used to improve Integrated Pest Management 732 

programs for these hemipterans. For example, recent studies have demonstrated that 733 

different habitat-management strategies can distract ants from attending hemipterans 734 

and reduce their aggressivity toward parasitoids. We suggest that the identification of 735 

parasitoid traits that reduce the impact of trophobiotic ants should be used to select 736 

parasitoid species in augmentative and classical biological control strategies. These 737 

traits could also be considered in genetic breeding programs for parasitoids of phloem-738 

feeding hemipteran pests. 739 
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 1416 

Fig. 1. Trophobiotic ants can recognize and attack immature and adult parasitoids of 1417 

phloem-feeding hemipterans. (A) A Lasius ant approaches an Aphidius parasitoid wasp 1418 

attempting to parasitize the aphid Aphis spiraecola. (B) A Lasius ant recognizes a 1419 

mummy of Aphis gossypii with an immature parasitoid developing inside.  1420 
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 1427 

 1428 

 1429 

 1430 

Fig. 2. Direct and indirect mechanisms by which trophobiotic ants protect phloem-1431 

feeding hemipterans from their parasitoids, and the negative outcomes of these 1432 

interactions for parasitoids. Solid arrows represent direct mechanisms, and dashed 1433 

arrows represent indirect mechanisms. Potential outcomes for parasitoids that have not 1434 

been specifically evaluated are represented with a question mark (?).  1435 
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 1436 

 1437 

 1438 

 1439 

 1440 

 1441 

 1442 

 1443 

 1444 

 1445 

Direct interactions 1446 
1: Tending ant feeds on hemipteran honeydew 1447 
2: Hemipteran can obtain several ant services not mediated by natural enemies  1448 
3: Hemipteran is attacked and killed by the parasitoid 1449 
4: Bottom-up effects of hemipterans on the parasitoid (increased host availability) 1450 
5: Parasitoid is attacked by tending ants 1451 
 1452 
Secondary interactions 1453 
6: Tending ant can be attacked by other ants competing for resources or space 1454 
7: Parasitoid can be attacked and killed by predators 1455 
8: Parasitoid can be attacked and killed by hyperparasitoids 1456 
9: Hemipteran can be attacked and killed by other parasitoids  1457 
10: Hemipteran can obtain several direct services from competing tending ants 1458 
11: Ant attendance can be reduced because tending ants can be attracted to honeydew excreted by competing 1459 
hemipterans 1460 
12: Tending ant can feed on the honeydew of other hemipteran species 1461 
13: Bottom-up effects of other hemipterans on the parasitoid (increased host availability) 1462 
14: Hemipteran is attacked and killed by predators 1463 
15: Parasitoid is attacked by other tending ants 1464 
 1465 
Tertiary interactions 1466 
16,17,18: Tending ants attack predators, hyperparasitoids and competing parasitoids to protect hemipterans 1467 
19,20,21,22,23: Predators can attack competing parasitoids, hyperparasitoids and competing hemipterans. Some 1468 
predators can also attack tending ants. 1469 
24,25,26: Competing ants can attack predators, hyperparasitoids and competing parasitoids 1470 
27,28: Bottom-up effects of the parasitoid and competing parasitoids on hyperparasitoids (increased host availability) 1471 
29,30,31,32: Bottom-up effects of hemipterans on predators and competing parasitoids (increased prey and host 1472 
availability) 1473 
33,34: Competing hemipterans are attacked and killed by the parasitoid and competing parasitoids 1474 
35: Competing parasitoids are attacked and killed by hyperparasitoids 1475 
36,37: Competing hemipterans can obtain direct services from tending ants and competing tending ants 1476 
38,39: Competing tending ants feed on honeydew excreted by hemipteran and competing hemipterans 1477 
40: Competing tending ants can be attacked by tending ants  1478 
 1479 
Interactions with the hole system 1480 
41,42,43,44: The whole system is affected by surrounding habitats, climate conditions, agronomic practices, and host 1481 
plant. 1482 
45: Host plant is affected by the whole system 1483 
 1484 
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Fig. 3. Direct and indirect interactions mediating the effects of trophobiotic ants on 1485 

parasitoids of phloem-feeding hemipterans. *Competing parasitoids and competing 1486 

hemipterans can belong to the same species (intraspecific competition), or to different 1487 

species (interspecific competition). **Competing tending ants can belong to the same 1488 

species from a different colony (intraspecific competition) or different species 1489 

(interspecific competition). ***Tending ants might also act as predators.   1490 
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Fig. 4. Proportion of studies evaluating different ant–parasitoid–hemipteran 1516 

interactions, grouped by genus. Different colours represent interactions of each family 1517 

of hemipterans (see key at bottom of figure). See Table S2 for summary of results and 1518 

search terms used to identify the relevant literature. Full details of the 66 selected 1519 

studies are provided in Table S1). The height allocated to each genus is proportional to 1520 

the number of studies multiplied by the number of species in each genus for each tri-1521 

trophic interaction. (H) = parasitoid genera that are hyperparasitoids.  1522 
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Table 1. Strategies of parasitoids of phloem-feeding hemipterans that may limit/reduce 1523 

the impact of trophobiotic ants. Examples of species with each strategy are included. 1524 

Strategy e.g. Parasitoid species References 
Behavioural strategies 

   
Running Pauesia silvestris, Lysiphlebus 

japonicus 
Völkl & Kroupa (1997); 
Kaneko (2002) 

Jumping Prionomitus mitratus, Aphidius 
aphidivorus, P. aphidis, Asaphes 
vulgaris, Metaphycus spp., Lysiphlebus 
testaceipes, Anagyrus pseudococci 

Novak (1994); Hübner & 
Völkl (1996); Barzman & 
Daane (2001); Vinson & 
Scarborough (1991); Tanga 
et al. (2015) 

Sensitivity of flight 
behaviour 

Pachyneuron aphidis, Pauesia 
silvestris, Asaphes vulgaris, Tryoxis 
angelicae, Anagyrus pseudococci, 
Aphidius colemani, Alloxysta brevis 

Völkl & Kroupa (1997); 
Völkl & Mackauer (1993); 
Tanga et al. (2015); Herbert 
& Horn (2008), Hübner 
(2000) 

Rapid movements and 
reduced host handling time 

Coccidoxenoides perminutus, 
Pseudaphycus flavidulus, Metaphycus 
aenneckei 

Daane et al. (2007); Sime & 
Daane (2014); Barzman & 
Daane (2001) 

Rapid oviposition Coccidoxenoides perminutus, 
Syrphophagus sp., Lysiphlebus 
testaceipes, Metaphycus aenneckei, 
Aphidus colemani 

Sime & Daane (2014); 
Kaneko (2002); Völkl & 
Mackauer (1993); Barzman 
& Daane (2001); Powell & 
Silverman (2010) 

Non-discriminatory 
oviposition 

Coccidoxenoides perminutus Sime & Daane (2014) 

Cryptic movements Pachyneuron aphidis, Lysiphlebus 
cardui 

Hübner & Völkl (1996); 
Völkl & Mackauer (1993) 

Ant-like movements Lysiphlebus fabarum, Paralipsis 
enervis 

Rasekh et al. (2010), Völkl 
et al. (1996) 

Learning capacity from 
encounters with aggressive 
ants 

Pauesia picta, Pauesia. pinicollis Völkl (2001) 

Foraging in sites avoided 
by ants 

Pauesia silvestris Völkl & Kroupa (1997) 

Reduced foraging time in 
host patches with ants or 
ant cues 

Lysiphlebus testaceipes, Tryoxis 
angelicae, Aenasius bambawalei, 
Anagyrus vladimiri, Tamarixia radiata, 
Acerophagous sp., Anagyrus lopezi 

Völkl & Mackauer (1993); 
Tanga et al. (2015); Fanani 
et al. (2020); Xu et al. 
(2020); Mouratidis et al. 
(2021); Kistner et al. (2017); 
Zhou et al. (2014) 

Reduced oviposition 
attempts in host patches 
with ants or ant cues 

Anagyrus lopezi, Anagyrus 
pseudococci, Acerophagous, Aenasius 
babawalei 

Fanani et al. (2020); Tanga 
et al. (2015); Beltrá et al. 
(2015); Xu et al. (2020); 
Sime & Daane (2014) 

Mating outside the natal 
patch 

Pauesia pini Mackauer & Völkl (2002); 
Nyabuga et al. (2012) 

Chemical strategies   
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Chemical mimicry of 
hemipteran hosts  

Lysiphlebus cardui, Lysiphlebus 
fabarum, Lysiphlebus hirticornis, 
Lysiphlebus japonicus, Adialytus 
arvicola, Paralipsis enervis 

Völkl (1992); (1994);  Völkl 
& Mackauer (1993),  Völkl 
et al. (1996); Liepert & 
Dettner (1993); Hertaeg et 
al. (2023); Mackauer & 
Völkl (2002); Kaneko 
(2002) 

Chemical mimicry of ants Paralipsis eikoae, Paralipsis enervis Stary (1966); Akino & 
Yamoka (1998); Völkl et al. 
(1996) 

Secretion of ant-deterrent 
substances 

Alloxysta spp., Phaenoglyphis spp. Völkl et al. (1994); Hübner 
(2000); Hübner et al. (2002) 

Recognition and avoidance 
of ant chemicals 

Aenasius babawalei, Anagyrus 
vladimiri 

Xu et al. (2020); Mouratidis 
et al. (2021) 

Morphological strategies     

Increased size and body 
hardness 

Aphidius ervi Hübner & Dettner (2000) 

Reduced size Coccidoxenoides perminutus Sime & Daane (2014) 
Telescoped abdomen Protaphidius nawaii Takada (1983) 
Myrmecomorphy Encyrtus spp., Holcencyrtus spp. McIver & Stonedahl (1993); 

Kelly et al. (2022) 
 1525 


