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Abstract Seed predation by rodents can act as a
recruitment barrier during community assembly, lim-
iting the establishment of exotic species. Predation
rates of exotic seeds may depend on their attractive-
ness, determined by their traits, and how different
they are from natives. Additionally, at the naturaliza-
tion stage of the invasion process, exotic seeds may
escape post-dispersal predation because they are rare
in the community. To test these ideas, we assessed
granivory in a Patagonian forest, where two species
with contrasting seed sizes are naturalized. Rubus
idaeus seeds are of similar size of natives, whereas
Prunus cerasus seeds are four times larger. The
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relative abundance of their seeds within the land-
scape is low compared to native seeds. Throughout
the fruiting season, we offered seeds from all species
present in the community (native and exotics), when-
ever they were available in the landscape. To consider
the effects of vegetation structure on rodent foraging
behavior, we offered seeds in areas with and without
understory cover. We found a hump-shaped relation-
ship between predation rates and seed size. Conse-
quently, rodents strongly avoided large exotic Pru-
nus seeds, but removed Rubus seeds at similar rates
to natives. Contrary to our expectations, seed abun-
dance did not affect predation, and hence, rarity did
not confer an advantage to exotic seeds. The presence
of shrub cover increased 2.3 times the removal rates
compared to open areas. We suggest that the dissimi-
larity in seed size compared to native species and the
presence of shrub cover influenced predation pressure
on exotic species within our community.

Keywords Granivory - Seed size - Landscape
abundance - Exotic species - Shrub cover

Introduction

In today’s globalized world, the introduction of exotic
species in natural habitats represents a major conser-
vation challenge (Sala et al. 2000). Once a species
arrives to a new habitat, multiple biotic and abiotic
factors determine whether it thrives and becomes part
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of the local community (Pearson et al. 2018; Weiher
et al. 1998). Among biotic filters, post-dispersal seed
predation is an important demographic bottleneck in
the life cycle of plants (Crawley 2000), which can
strongly affect the ability of exotic species to become
part of the recipient community. Generalist grani-
vores will impose a biotic barrier to the invasion pro-
cess when consumption of exotic seeds limits their
establishment and the maintenance of a self-sustained
population in the new area (Pearson et al. 2014; Pear-
son et al. 2012). In general, granivores do not for-
age randomly but select seeds with certain traits that
make them more profitable. They preferentially for-
age on species with seeds that can be handled more
efficiently, provide more energy reward, nutrient con-
tent, or represent abundant food resources (reviewed
in Larios et al. 2017a). Therefore, understanding
which traits affect the feeding preferences of general-
ist granivores will improve our inferences about the
potential of exotic seeds to bypass the post-dispersal
predation filter in new habitats.

Among granivores, rodents are widespread gen-
eralist consumers whose foraging preferences can
modulate the recruitment of exotic species (Con-
nolly et al. 2014; Muschetto et al. 2015; Pearson et al.
2011; Maron et al. 2014). Even though factors driving
rodent foraging choices can be multifaceted includ-
ing coat hardness, nutrient content and phenolic com-
pounds (Blate et al. 1998; Gong et al. 2015; Sidhu
and Datta 2015), seed size is a key trait that influ-
ences their preferences (Dylewski et al. 2020). In gen-
eral, seed size determines the effort needed for seed
handling and the energy rewards per food item (Lar-
ios et al. 2017a; Pyke et al. 1977; Reader 1993). As
a result, rodents tend to select large seeds, provided
that the energetic rewards outweigh the effort needed
(Lichti et al. 2017). However, the effects of seed size
on granivory depend on the range of sizes present in
the community. Usually, positive responses to seed
size are found in small-seeded grasslands, while neg-
ative responses are common in large-seeded forests.
In the former case, rodents will preferentially forage
on large seeds, whereas in the latter they will select
small and intermediate seed sizes (Radtke 2011).
Such shifts in the response of rodents to seed size
may explain the contrasting results reported in the
literature, where large exotic seeds have been found
to be preferentially consumed (Nufiez et al. 2008),
or avoided (Pearson et al. 2011). Additionally, when
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exotic seeds become part of a community, how dif-
ferent they are from native seeds can affect the selec-
tion by rodents. If they are dissimilar to natives with
respect to key traits for rodent foraging decisions
(e.g., size), exotic seeds may be perceived as a distinct
food item. Consequently, they may experience dif-
ferential consumption rates to those of native seeds,
a pattern that has been observed in invaded commu-
nities (Pearson et al. 2014, 2018, 2011). In sum, the
consumption rates of exotic seeds are expected to
depend on the type of response of rodents to seed size
within the recipient community (positive or nega-
tive) and on how large or small exotic seeds are with
respect to natives.

In addition to species-specific characteristics like
seed size, granivores may optimize their foraging
by consuming the most abundant species in the seed
pool (Thompson et al. 1991; Larios et al. 2017b). As
central place foragers (Orians and Pearson 1979),
rodents travel from their dens to feeding areas on
daily basis (Moran-Loépez et al. 2015; Rosalino et al.
2011). Under such circumstances, foraging on com-
mon “preys” (i.e., seeds) should maximize intake
rates (Murdoch 1969). Since they encounter common
seeds more frequently, they may be able to search
and manipulate them more efficiently (reviewed in
Horst and Venable 2017). Such frequency-dependent
seed selection is relevant at early stages of the inva-
sion process, when exotic species tend to show low
propagule pressure, and hence, their seeds are uncom-
mon (Kfivanek et al. 2006; PySek et al. 2015; Sim-
berloff 2009) and management actions can be more
efficiently implemented (Simberloff et al. 2013). If
rodents forage on common seeds, exotic species may
benefit from being rare having a higher probability to
escape post-dispersal predation. In general, studies
have evaluated the positive effect of local seed abun-
dance (i.e., density-dependent foraging) (e.g., Barai-
bar et al. 2012; Batisteli et al. 2020; Myster 2003;
Wang 2020) while overlooking the effects of the
relative abundance of seeds across the landscape (i.e.,
frequency-dependent foraging, Allen and Greenwood
1988).

Granivory, as any biotic interaction, can be modu-
lated by the ecological setting in which plant-animal
encounters occur. In particular, the structure of the
vegetation can affect post-dispersal predation rates
leading to high spatial variability in the commu-
nity of recruits (Germain et al. 2013), including the
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establishment of exotic species (as observed in Mus-
chetto et al. 2022). Areas with low or no vegetation
cover can reduce the activity of rodents (Garcia et al.
2011; Kollmann and Buschor 2003), limiting the
probability of seed encounter (Hulme 1994; Wang
2020). Also, it can diminish the time devoted to seed
discrimination activities such as sniffing or han-
dling seeds previous to their removal, promoting an
opportunistic foraging behavior (Moran-Lépez et al.
2018; Perea et al. 2011). Consequently, seed preda-
tion by rodents tends to be lower in open areas and
the effects of seed traits on their foraging choices
attenuated, equalizing seed removal rates across spe-
cies. Shifts in rodent foraging behavior can alter their
role in biological invasions. If they preferentially for-
age on exotic seeds, providing biotic resistance to
the recipient community (Nufiez et al. 2008; Pearson
et al. 2014), lower predation rates and selectivity in
open areas could facilitate the escape of exotics from
post-dispersal predation, potentially turning these
areas into invasion foci. Alternatively, if rodents pref-
erentially forage on native seeds (Pearson et al. 2011),
lower activity and selectivity could facilitate the sur-
vival of natives, promoting a less invaded seedling
community.

In this work, we evaluated how the foraging behav-
ior of rodents affect the way exotic seeds integrate in
the recipient community in a Patagonian temperate
forest. In particular, our questions are if (1) the size of
exotic seeds and how different they are from natives
affected seed removal rates by rodents and if (2) rarity
(i.e., low relative abundance) conferred an advantage
to overcome the post-dispersal predation filter. Also,
we (3) evaluated if the intensity of seed removal and
selection differed between microhabitats (open areas
vs under cover). To obtain a full picture of rodent for-
aging decisions, we estimated removal rates for all
seeds present in the community (exotic and natives)
and quantified the joint effect of seed size, relative
abundances, and understory cover. In our community,
two species with contrasting seed sizes, Rubus idaeus
and Prunus cerasus, have become naturalized (i.e.,
established self-sustained populations at a consider-
able distance from the initial introduction but have
not become dominant, Blackburn et al. 2011). Seeds
of Rubus idaeus are of similar size to those of natives,
whereas seeds of Prunus cerasus are four times larger
than the largest native seed (Fig. 1). Seeds of both
species are rare in the community, representing less

than 2.3% of seeds available across the landscape. We
expected a positive effect of seed size on predation
rates given that native seeds of the recipient commu-
nity are small (seeds mass ranges from 2 to 33 mg).
As a result, rodents would preferentially consume
large Prunus cerasus seeds, while removing Rubus
idaeus seeds at similar rates to natives (Reader 1993).
Additionally, we expected that rodents feed on com-
mon seeds and hence, rarity would confer an advan-
tage to exotic species. Finally, in areas with low shrub
cover, we expected a lower rodent foraging activ-
ity and opportunistic foraging behavior, resulting in
lower predation rates overall and subtler differences
across species.

Materials and methods
Study site

The study was conducted in summer 2020 in Llao
Llao Reserve within Nahuel Huapi National Park
(41° 8" S, 71° 19’ W, Rio Negro, Argentina). The cli-
mate is warm and humid with a mean summer tem-
perature of 15 °C and an average annual precipitation
of 1800 mm, occurring mostly in winter (Mufioz and
Garay 1985). This temperate forest is part of the Sub-
antarctic phytogeographic province (Cabrera 1971),
and vegetation structure is characterized by a mature
forest interspersed with open areas. Tree canopy is
dominated by Nothofagus dombeyi and Austroce-
drus chilensis (Mermoz and Martin 1986), and the
understory, by Aristotelia chilensis, Azara micro-
phylla, and Berberis darwinii. Less common tree spe-
cies are Schinus patagonicus, Luma apiculata, and
Maytenus boaria. In the study area different fleshy-
fruited exotic species have become naturalized; Rubus
idaeus, Prunus avium, and Sorbus aucuparia. Fruit
(and seed) availability peaks in summer, when almost
all native and exotic species fructify (except Luma
apiculata and Sorbus aucuparia). The most impor-
tant seed predators in Llao Llao forest are the gen-
eralist rodents Abrothrix hirta, Oligoryzomys longi-
caudatus, and Abrothix olivacea (approximately 25 g,
Cricetidae family) (Garcia et al. 2011). Seed removal
by granivorous birds tends to be low or absent in
Patagonian temperate forests (Bravo et al. 2015) and
ant granivory is negligible (according to exclusion
experiments performed in the area, unpublished data).
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Fig. 1 a Seed size of native (a)
and exotic seeds presents

in the studied community
(temperate Patagonian for-
est). b Relative abundance
of seeds (proportion) of
species present in the com-
munity across the weeks

in which the cafeteria
experiment was performed
(from 30/01/2020 to
10/03/2020). The horizontal
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Landscape-level seed abundance

We estimated the relative abundance of seeds at
the landscape-level using species-specific bootstrap
samples of seed availability on a weekly basis. To
this end, we combined information of the relative
abundance of fruiting species, the canopy and crop
size of their individuals, and their seeding phenol-
ogy. To estimate species-specific relative abun-
dances, we established 5 transects of 100X2 m
comprised in an area of 10 ha, in which we identi-
fied and measured the canopy diameter of all repro-
ductive individuals of fleshy fruited species. To
estimate species-specific crop sizes, at the begin-
ning of the fruiting season we randomly selected
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A.microphylla ® M.boaria ® R.idaeus

between 10 and 15 focal individuals of each species.
We measured their canopy, counted their fruits, and
marked 10 branches in which we counted the initial
fruit number. On a weekly basis and for each tagged
individual of each species, we monitored the num-
ber of fruits present (in branches and in the canopy)
and the proportion of fruits missing in the branches
(with respect to previous week). Missing fruits were
mostly due to fall of ripe fruits or dispersal by birds
(clean vs pulp remaining in the pedicel). Combining
the number of fruits in branches with the proportion
that went missing during the week and the num-
ber of seeds per fruit, we could infer the number of
seeds of each species available to rodents in soil.
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To estimate fruit availability at the landscape scale
we used the approach of Carlo and Morales (2016).
For each species, we estimated the number of fruit-
ing individuals per 10 ha and randomly assigned
them a canopy size according to the species-specific
distribution of canopy sizes observed in transects.
For instance, if the i-th plant species had 20 fruiting
individuals per 10 ha, we randomly sampled 20 can-
opy sizes from the Gaussian kernel density estimated
from the observed canopy sizes in the landscape tran-
sects. In this way, we accounted for variability in can-
opy sizes within species. We then estimated the crop
size of sampled individuals by means of a species-
specific allometric functions between canopy size and
fruit production fitted to data from tagged individuals.
On a weekly basis, we adjusted the number of seeds
available for rodents by accounting for species-spe-
cific phenology (fruits available ripening that week)
and the proportion of fruits fallen or dispersed (using
data from tagged branches). Then, we converted the
number of fruits into seeds considering the average
number of seeds per fruit (measured in 50 fruits per
species) and calculated the relative abundance of each
species’ seeds. This process was repeated 2000 times
and the average of all replications was computed. See
Supplementary material for further details.

Cafeteria experiment

To assess the combined effect of seed size of each
species, their weekly relative abundance, and vegeta-
tion structure on seed removal we performed a caf-
eteria-style experiment (Boone and Mortelliti 2019).
We selected 15 sites distributed throughout the study
area (2.4 ha) harboring nearby areas with and without
shrub cover. The presence of sites with such charac-
teristics depended on tree fall gaps (Rebertus et al.
1993), which lead to a mean and minimum distance

Table 1 Estimated relative abundance of seeds of native and exotic

each week of the cafeteria experiment

between them of 226 m and 13 m, respectively. In
each site, we established two nearby plots of 1m?
located in different microhabitats: under shrub cover
and in open areas. Seed-offering plots categorized as
shrub cover presented >50% of vegetation cover less
than 0.5 m high (Crego et al. 2018) in a buffer of 10 m
around the plot. Those categorized as open areas had
no shrubs or grasses taller than 20 cm within 10 m
of the plot radius. We conducted the cafeteria experi-
ment in the peak of fruit production (four weeks,
from the end of January to the middle of March of
the austral summer, Lediuk et al. 2014). On a weekly
basis, we offered rodents seeds of four species that
were available in the landscape with two condi-
tions: (1) they had contrasting relative abundances
in the community and (2) seeds of exotic species
were always present in the offering trial (Table 1).
In total, 120 trials were performed (15 sites X2 plots
per site X4 weeks). In each plot we randomly placed
four wooden sticks, nailed to the soil, with 10 seeds
of each species being offered (four species per trial,
40 seeds in total; Moyano et al. 2019; Motta et al.
2021). By equalizing the number of seeds per spe-
cies, we isolated the effects of frequency-dependent
foraging (based on the relative abundance of species
at the landscape scale) from inter-specific differences
in seed abundances in the offering trial (related to
density-dependent effects at local scales). Seeds were
glued with nontoxic odorless adhesive and manipu-
lated with gloves to avoid human odor (Moyano et al.
2019). We monitored seed removal after 24 h, 72 h,
and one week after seeds offering.

In the cafeteria experiment, we interpreted seed
removal events as predation events. Rodents from the
Cricetidae family scatter-hoard seeds with a medium
weight of 0.77 g (with q,,5 and q, -5 ranging from
0.05 and 2.26 g, Gémez et al. 2019) a value much
higher than seeds present in our community (e.g.,

species (bold type) at the landscape scale that were offered in

Week/species A. chilensis S. patagonicus P. cerasus B. darwinni R. idaeus A. microphylla M. boaria
1 0.921 0.005 0.022 0.001

2 0.973 0.003 0.004 0.012

3 0.987 0.002 0.006 0.004

4 0.984 0.007 0.007 0.0003

In all cases 10 seeds per species were offered (40 in total)
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native seeds range between 0.002 and 0.033 g, Sup-
plementary material, Table S1). The only exception is
Prunus cerasus whose seed size (0.46 g) is within the
range of scatter-hoarding by Cricetidae rodents.

Regarding seed traits, species-specific seed mass
(g) and seed size (as seed area, mm?) were calculated
in 50 seeds per species. We measured seed mass in a
laboratory scale with a precision of 0.001 g and the
major and minor seed diameter with a gauge, and
then we estimated the area assuming oval or spheri-
cal shapes (Supplementary material, Table S1). Both
variables, seed size and mass were highly correlated
across species (Pearson correlation coefficient 0.99, p
value < 0.001).

Statistical analysis

Effects of shrub cover on plot encounter and seed
removal

To estimate the degree of rodent foraging activity in
the study area, we evaluated the effect of microhabitat
(open areas vs shrub cover) on plot encounter prob-
ability (Hulme 1994; Wang 2020). To this end, we
fitted a Bernoulli Generalized Linear Mixed Model
(GLMM; logit link function) to the occurrence of seed
removal in the first 24 h after offering, when differ-
ences across plots were largest (1 =at least one seed
of any species was removed; O=no seed removal;
Supplementary material 3.1). We included microhab-
itat as a categorical predictor (open vs under cover)
and site as a random factor in the intercept to account
for site-specific spatial variability in rodent forag-
ing activity (e.g., due to the presence of core areas
of home ranges, Rader and Krockenberger 2006), or
differences in local seed availability (Fraschina and
Knight 2009). In addition to plot encounter, rodents
may spend more time removing seeds in microhabi-
tats with shrub cover, which offers them shelter from
predators. As a result, seed removal rates (i.e., num-
ber of seeds removed out of those offered) tends to
be higher under shrub cover than in open areas (Perea
et al. 2011). Consequently, to test the effect of micro-
habitat on seed removal rates, we performed a Gener-
alized Linear Mixed Model (GLMM) with a binomial
response (logit link, Supplementary material). We
modeled the proportion of seeds removed 72 h after
being offered in each plot as a function of the micro-
habitat where it was located (open areas vs under
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shrub cover) and the site was included as a random
factor in the intercept. We chose 72 h because it was
the time when differences across plots was the largest
(plots were encountered and not depleted).

Both models were fitted in a Bayesian approach,
using the brms R package (Biirkner 2017). We used
weakly informative priors for the intercept and
sigma (random effect standard deviation), and a flat
improper prior for the shrub effect term. We ran 3
chains over 10,000 iterations, leaving 1000 for warm-
up. After checking for convergence (Rhat<1.01) and
sufficient effective sample sizes (n.eff>2500), we
assessed model fit by means of posterior predictive
checks (Supplementary material, Fig. S1-S2). See
Supplementary material for full model specifications.

Factors driving foraging choices by granivores

We assumed that the number of seeds removed by
each species (in each week, and plot) followed a
Wallenius’ hypergeometric distribution (Fog 2008),
which models selection in a multivariate manner,
considering the number of seeds available of each
species in the offering trial. Although a multinomial
distribution is frequently assumed to model data from
cafeteria experiments (Boone and Mortelliti 2019;
Mortelliti et al. 2019), a hypergeometric distribution
considers sampling without replacement, allowing to
relax the assumption that food items are refilled after
each visit, which was not the case in our experimen-
tal design as seeds were not replaced after predation.
We modelled seed selection probability (multino-
mial logit link function) as a function of the species-
specific seed size (with a quadratic effect to account
for possible hump-shaped responses, Dylewski et al.
2020), their relative abundance in the landscape (fre-
quency-dependent effects), and the interaction of both
covariates with shrub cover (Supplementary mate-
rial). In this analysis, we used data from the 72 h revi-
sions to avoid excess of zeros due to lack of encoun-
tering at 24 h or depletion after a week. Seed size and
relative abundance showed skewed distributions, and
hence, to attain a more robust model parameterization
we log-transformed them. In addition, we standard-
ized these variables (mean=0, sd=1) to make the
magnitude of their effects comparable. We used a
Bayesian approach, evaluating the likelihood function
with the BiasedUrn R package (Fog 2022), and sam-
pling the posterior distribution with a random walk
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Metropolis algorithm, as implemented in the mcmc
R package (Geyer 2022). We used weakly informa-
tive priors for all parameters. We ran 3 chains over
200,000 iterations, saving a sample every 20 itera-
tions. After checking for convergence (Rhat<1.01)
and effective sample sizes (n.eff >9000), we assessed
model fit by means of posterior predictive checks
(Supplementary material, Fig. S3). From posterior
distributions we calculated mean effects and cred-
ible intervals (q0.025, q0.975). For specifications of
priors, model structure and distributions see Supple-
mentary material. For all regressions, we checked for
spatial autocorrelation in residuals using the Moran’s
test ("DHARMa" package in R) (Hartig 2022). We
obtained a p value > 0.05, which suggests the absence
of spatial autocorrelation between sites (Supplemen-
tary material, Fig. S4, Table S2).

Results

In our community, seeds of native species tend to be
relatively small (seed area ranged between 2.57 and
15.95 mm? and mass between 0.002 and 0.033 g,
Supplementary material, Table S1). Seeds of Rubus
ideaus are of similar size to natives, whereas those
of Prunus cerasus much larger than the largest
native (i.e., Schinus patagonicus) (Fig. la; 4 and 13
times larger with respect to seed area and weight).
During the cafeteria experiment, the relative abun-
dances of species at the landscape scale was highly
variable (Fig. 1b) with seeds of Aristotelia chilensis

dominating the community (on average representing
96% of seeds available). Relative abundance of seeds
of the rest of native species ranged between 0.02 and
0.7%. In the case of Rubus idaeus and Prunus cerasus
the relative abundance of their seeds was 1.58 and
0.70% across the season.

As expected, the probability of seed encountering
by rodents was higher under shrub cover than in open
microhabitats (Table 2). On average, after 24 h of
seed offering, 55% of plots located under shrub cover
were encountered, whereas this value dropped to 30%
in open areas (Fig. 2a). Similarly, seed removal rates
were almost 4 times higher in plots under shrub cover
than in open areas (19% and 5%, covered and open
respectively) (Fig. 2b).

Contrary to our expectations, within the range of
seed sizes present in our community, we detected a
positive effect of seed size that reversed for larger
seeds (as indicated by the negative effect of the quad-
ratic term, Table 3). Accordingly, we observed a
hump-shaped response of seed removal rates of spe-
cies with respect to their seed size (Fig. 3. Also, we
found no effect of the relative abundance of seeds at
the landscape scale (Table 3). Furthermore, foraging
decisions by rodents were similar between open areas
and shrub cover (non-significant interaction term of
cover with seed size or relative abundance, Table 3).
When comparing exotic species with natives, removal
rates of Rubus idaeus were comparable to average
values of seed removal for native species (95% quan-
tile overlapped average values of natives), whereas
removal of Prunus cerasus seeds were 5 times lower

Table 2 Summary of models assessing the effect of microhabitat (open areas vs shrub cover) on seed removal rates

Parameter Mean CI f R n.eff
Probability of encounter
Intercept (Shrub cover) Bo 0.22 —0.30; 0.80 0.78 1.00 2855
Microhabitat (Open) B - 1.10 —1.88; — 0.35 0.99 1.00 2799
Site (random effect) 0y 0.25 0.01; 0.75 1 0.99 2675
Removal rates
Intercept (Shrub cover) B - 1.49 —191; - 1.11 1 1.00 2669
Microhabitat (Open) b — 145 - 1.71; -1.22 1 1.00 2713
Site (random effect) o 0.60 0.36; 1.06 1 1.00 2574

Probability of plot encountering during the first 24 h after seeds offering (Bernoullli regression) and seed removal rates after 72 h
(Binomial regression). The site where the seed-offering plot was located was introduced as a random effect in the intercept (standard
deviation across sites, o). The type of microhabitat was introduced as a fixed effect, comparing open area plots (f,) against those
with shrub cover (intercept, f,). Mean poAsterior distribution (mean effect), 95% credible interval (CI), proportion of the posterior
with the same sign as the mean (f), Rhat (R), and the effective sample size (n.eff). In bold covariate effects with f> =0.95
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Fig. 2 a Proportion of (a)
plots with seed removal
after 24 h of seed offer-

ing located in covered or
open microhabitats. Bars
represent the mean values
and lines the standard error
(across weeks). Dots depicts
mean encounter rates per
week. b Seed removal rates
after 72 h with respect to
microhabitat (cover and
open). In b dots represent

1.001

0.754

0.501

Encounter rates (proportion)

1.001

0.754

0.501

Removal rates (proportion)

0.254 0.254
removal rates per plot and
week
()
0.004 4 0.004
Covlered O[;en Cov;ered Oplen
Microhabitat Microhabitat

Table 3 Summary of the seed selection model according
to species-specific size of seeds, their relative abundance in
the landscape (frequency-dependent effects), and the type of

microhabitat where the plot was located (open vs shrub cover,
with the latter as the reference category)

Parameter Mean CI f R n.eff
Seed size il 1.99 1.08,2.91 0.99 1.00 16,842
Seed size? b —-2.07 —-2.94,-1.30 1 0.99 18,219
Abundance b 0.00 — 1.64, 1.64 0.50 0.99 10,300
Seed size X Microhabitat (open) by 0.44 —0.70, 1.59 0.73 0.99 14,884
Seed size? x Microhabitat (open) Ps —-0.59 — 1.86, 0.55 0.70 0.99 14,507
Abundance X Microhabitat (open) P 0.01 —1.64,1.63 0.50 1.00 9856

Mean posterior distribution (mean effect), 95% credible interval (CI), proportion of the posterior distribution with the same sign as
the mean (f), Rhat (R), and effective posterior sample size (n.eff). In bold covariate effects with > =0.95

than that of natives (0.04 vs 0.18; Fig. 4, see in Fig S5
raw values). In fact, predation rates of Prunus drove
the hump-shaped response of predation rates to seed
size (Fig. 3b).

Discussion

The selective foraging of granivores can act as a
biotic filter that affects the composition of seed
communities. In particular, rodent foraging prefer-
ences for certain seeds can be based on their relative
abundance, their traits, as well as the environment
in which they encounter them (Germain et al. 2013;
Lichti et al. 2017). In the context of biological inva-
sions, the way granivores interact with exotic seeds
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can modulate how they integrate into the recipient
community (Larios et al. 2017a).

During the first stages of the invasion process,
exotic species establish self-sustained populations
but do not become dominant in the community. As
a result, propagule pressure (and the relative abun-
dance of seeds) tends to be low (Simberloff 2009).
In our community, exotic seeds of Prunus and Rubus
represented together less than 2.3% of seeds avail-
able throughout the season. Rodents, as generalist
foragers, are expected to focus on common seeds to
increase their intake rates (Horst and Venable 2017).
Hence, we posited that exotic seeds could benefit
from low predation pressures given their rarity in the
community. However, we found no effect of the rela-
tive abundance of seeds on removal rates (Table 3),
indicating that rarity does not provide any advantage
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Fig. 3 a Seed removal rates (a)

as a function of seed size in

Covered

Open

covered and open micro- 1.004

habitats. Dark dots and line
depict the mean and 90%
credible interval predicted
by the full Hypergeometric
model (i.e., all covariates,
Table 3). Native and exotic
species are represented
with circles and triangles,
respectively. Asterisks rep-
resent mean observed
values, and empty dots

raw data. b Model estimates
of the probability of seed
removal as a function of
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tial predictions, we assumed
that only one seed will be
removed, that all species
were offered with equal
number of seeds, and that
they had the same relative
abundance at the landscape
level. Line represents mean
model predictions and rib-
bon 90% credible intervals.
In both panels to improve
data visualization X-axis
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against post-dispersal predation. A possible cause of
such lack of response could be a mismatch between
the scale at which we measured the relative abun-
dance of seeds and that affecting rodent foraging
decisions. Rodents may respond to seed availability
within their home-ranges, where they usually search
for food (0.5 ha, Monteverde and Hodara 2017; Valla-
dares-gémez et al. 2020), rather than across the land-
scape (2.4 ha of our study area). If the distribution
of seed resources is patchy, rodent foraging choices
would be driven by relative abundances at seed neigh-
borhoods rather than at the landscape scale (Ostoja
et al. 2013). However, in our study area such scenario
seems unlikely. Aristotelia chilensis dominated the
seed community throughout the fruiting season across

666 2635 6.8 16.0 66.6

Seed size(mm?)

B.darwinii Pcerasus @ S.patagonicus

@ Native A Exotic
M.boaria @ R.idaeus

the landscape (>96% of seeds available) (Fig. 1b),
but showed low removal rates (0.13+0.18, Fig. 4).
In contrast, Schinus patagonicus seeds were the most
preferred (0.54+0.33, Fig. 4) despite being uncom-
mon in the community (0.3% of seeds available,
Fig. 1b). Such pattern suggests that in our commu-
nity rodent foraging choices are driven by seed traits
rather than by the relative abundance of species (see
Veech 2001 for similar results).

Regarding seed traits, we found a hump-shaped
relationship between predation rates and seed size
(Fig. 3 Table 3). This pattern is consistent with pre-
vious studies in temperate forests, where large seed
variability has been pointed out as the underlying
cause of such hump-shaped responses (Dylewski
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Fig. 4 Total seed removal

Native Exotic

rates by species throughout
the 4 weeks of the cafeteria
experiment. Native and
exotic species are repre- 0.75+
sented with circles and tri-
angles, respectively. Upper
panels represent removal
rates in plots located under
shrub cover, lower panels
represent patterns in open
microhabitats. Dots depict
mean values (across plots
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et al. 2020). However, our native community is char-
acterized by small seeded species (12.8 mg on aver-
age), and hence, a positive response to seed size
was expected (Dylewski et al. 2020). This positive
response was found in the largest native seed species,
but it reversed when considering the large and exotic
Prunus cerasus seeds (Fig. 3b). Such hump-shaped
response to seed size may reflect that increased han-
dling costs of Prunus seeds outweigh the energetic
rewards per seed item (Brewer 2001; Muifioz and
Bonal 2008). In contrast, seeds of Rubus idaeus,
which were of similar size to natives, showed aver-
age consumption rates (Figs. 1a and 4, see Connolly
et al. 2014; Pearson et al. 2011 for similar results).
In principle, the patterns we found can be explained
by seed size effects on rodent foraging choices. The
largest native seeds (Schinus patagonicus) were
the most preferred and consumption rates of exot-
ics matched how similar they were with respect to
natives (according to Pearson et al. 2018). Nonethe-
less, we cannot rule out that other seed characteris-
tics also affected seed selection. As any food item,
the profitability of seeds may also depend on other
traits such as coat hardness, nutrient content or tox-
icity (Blate et al. 1998; Kollmann et al. 1998; Lobo
2014; Gong et al. 2015; Sidhu and Datta 2015). In
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this sense, Prunus cerasus seeds were not only the
largest but their coats were harder than most natives,
whereas Rubus ideaus seeds were similar to natives
in both traits (Supplementary material, Table S1).
Information of the chemical composition of seeds is
partially available for exotic species, though missing
for natives. Seeds of both exotic species have compa-
rable levels of macronutrients (i.e., lipids and protein,
Shaun Bushman et al 2004; Rodriguez-Blazquez et al
2023) that affect rodent foraging preferences (Kerley
and Erasmus 1991; Gong et al. 2015; Moran-Lépez
et al. 2018). In addition, despite Prunus seeds contain
chemical defenses such as cyanogenic glucosides,
which are not present in Rubus, these compounds
are not considered to be toxic for rodents (Kollman
et al. 1998; Cooper and Johnson 1984). Therefore,
differential removal rates of exotic seeds seem to be
driven by their different sizes and not by their chemi-
cal composition. Yet, as previously acknowledged,
there are significant knowledge gaps regarding the
chemical composition of native seeds. Future work
extending our data of seed traits will allow to evalu-
ate if their differential removal rates mainly respond
to size or a combination of characteristics. All in all,
with the information available, our results support
the idea that when an exotic species integrates into a
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community, their similarity to natives affects the way
animals interact with them, and ultimately, their prob-
ability to establish (Pearson et al. 2018).

As expected, microhabitat was a strong modula-
tor of seed encounter and removal rates (Fig. 2). In
open microhabitats seed removal rates were two times
lower than under shrub cover, partly due to a reduced
probability of seed encounter, a pattern previously
found in the study area (Garcia et al. 2011). However,
contrary to our expectations rodent selectivity did not
vary in areas with or without shrub cover (Table 3).
Such pattern may reflect that predation risks in open
areas within the forest were moderate, or alterna-
tively, that rodents conducted risk-taking behaviors
to ensure the removal of the highly preferred Schinus
patagonicus seeds. Independently of the underlying
cause, our results point out that the post-dispersal pre-
dation filter operates similarly across microhabitats
(i.e., differences in removal rates across species were
maintained), though with a lower intensity in open
areas. In the context of invasions, this pattern implies
low removal rates of Prunus cerasus seeds irrespec-
tively of the microhabitat. At this point, it is impor-
tant to note that caching of Prunus seeds have been
reported for rodents of the Cricetidae family, though
with low cache survival (Beck and Vander Wall 2010;
Fei et al. 2011). Whether low removal rates results
advantageous or not for Prunus cerasus will depend
on the balance between seed caching and predation
rates of handled seeds in our study area (Gémez et al.
2019). In the rest of species, we are confident that
removed seeds were predated given their small size.
Thus, our results suggest that in open areas seeds
have a higher probability to survive, at least in the
short term. It remains an open question if reduced
predation translates into enhanced recruitment. It will
depend, among others, on the suitability of environ-
mental conditions in open areas (according to the
regeneration niche of species (Grubb 1977).

Our work shows that in our community removal
rates across species is highly variable and suggest
that these patterns are mediated by seed size and by
vegetation structure. Both factors affected how exotic
seeds interacted with rodents in the recipient com-
munity and, ultimately, post-dispersal seed removal
rates. In particular, Prunus cerasus seeds, which were
4 times larger than the largest natives, were system-
atically avoided, whereas those of Rubus idaeus were
removed at similar rates to them (Figs. la and 4).

These results support the idea that the performance
of exotic species in a new community will depend
on how different they are from natives (Pearson et al.
2018) and agrees with the notion that seed size is an
important factor influencing the foraging choices of
rodents (Dylewski et al. 2020; Radtke 2011). Regard-
ing vegetation structure, even though seed selection
patterns were consistent across microhabitats, in open
areas seeds had two times higher probability of not
being removed than under shrub cover. Given the
small size of seeds in our community, we expected
that seed removal would mostly reflect predation
rates. Thus, our results suggest that in our community
seeds located in open areas have a higher probability
to bypass the post-dispersal predation filter.
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