

Supplementary Information for

**On farm experience shape farmer knowledge, perceptions of pollinators and management practices**

Osterman *et al.*

Correspondence to: [jul.osterman@gmail.com](mailto:jul.osterman@gmail.com)

This PDF file includes:

Supplementary Material

Table S1 - S4

Fig. S1 - S6

Supplementary References

Grower Survey (English)

## **Supplementary Methodology**

### **General survey design**

Within a facilitated workshop, all authors decided on the insect pollinated crops to focus this study on. One criterion was availability, *i.e.*, number of farmers in each country, and the other criteria were variation within the pollinator community of the crops and variation in their pollinator dependency, resulting in four crops: apple (*Malus domestica*), avocado (*Persea americana*), kiwifruit (*Actinidia deliciosa*) and oilseed rape (*Brassica napus* L. or OSR). The survey was then designed in English and was translated by the surveyors for each country and proofread by another independent person. Growers were contacted either personally (*e.g.* at grower workshops), via email, via standard mail or through an online platform, which was promoted in different ways. Growers received a letter of introduction in addition to the survey.

### **Literature review: flower visitor abundances per crop and country**

To understand if farmer perceptions are linked to relative abundances of pollinators per crop and country, we performed a literature review. We included studies in which data could be grouped into the same seven functional pollinator groups as in the questionnaire (*i.e.* honey bees, bumble bees, other bees, flies, butterflies, beetles, other pollinators). For each country-crop combination, we aimed to identify one or more studies recording relative flower visitor abundance (see Supplementary Table 02). If several studies were found, the average relative abundance was calculated. If no suitable study from a target country was found, studies from neighbouring countries were used (see Supplementary Table 02). The only country-crop combination for which we could not identify a suitable study to match our survey data was Israel-Avocados and therefore this combination was excluded from following analyses. To link those with farmer perceptions, we calculated the median rating of pollinators per crop and country.

### **Pollination biology of crops investigated**

#### **1. Apple (*Malus domestica*)**

Worldwide, apple is an economically important crop. In 2019, apple was cultivated on 4.7 million ha globally with a total harvest of 87 million tonnes (FAOSTAT, 2021). Apple is highly pollinator-dependent (Free, 1993) and, for successful fruit set, most apple varieties need a cross-compatible pollinizer cultivar (Delaplane and Mayer, 2000). As predominant pollinators for

apple flowers, bees and hoverflies are mentioned (Delaplane and Mayer, 2000; Klein et al., 2007), with bees accounting for most of the pollination (Garratt et al., 2016).

## 2. Avocado (*Persea americana*)

The demand for avocados is growing steadily. While in 2000 2.8 million tonnes were produced worldwide, already in 2010 production reached 3.9 million tonnes and in 2019 7.2 million tonnes (FAOSTAT, 2021). In 2019, avocado was cultivated on 0.7 million ha globally (FAOSTAT, 2021). The pollination of avocados is complex due to its dichogamous flowering behaviour (Free, 1993). While in some parts of the world avocados can self-pollinate or the pollen transfer is mediated by wind, as found in the US (Davenport, 2019), in other areas insects are required for successful pollination (Ish-Am and Lahav, 2011). This difference might be a result of different climatic regimes (Davenport, 2019). In Mexico, its native range, flies were the most abundant flower visitors, followed by honey bees and wasps (Pérez-Balam et al., 2012).

## 3. Kiwifruit (*Actinidia deliciosa*)

In 2019, Kiwifruit was cultivated on 0.3 million ha and 4.3 million tonnes were harvested globally (FAOSTAT, 2021). Kiwifruit is a functionally dioecious vine, meaning that it has distinct male and female individuals. Sufficient pollen transfer from males to female plants is crucial for kiwifruit production (Sáez et al., 2019). In its native range, kiwifruit can be pollinated by insects and by wind (Craig et al., 1988), but the most common pollination strategy is artificial pollination since kiwifruits are not so attractive to bees due to their lack of nectar reward (Sáez et al., 2019).

## 4. Oilseed rape (*Brassica napus*)

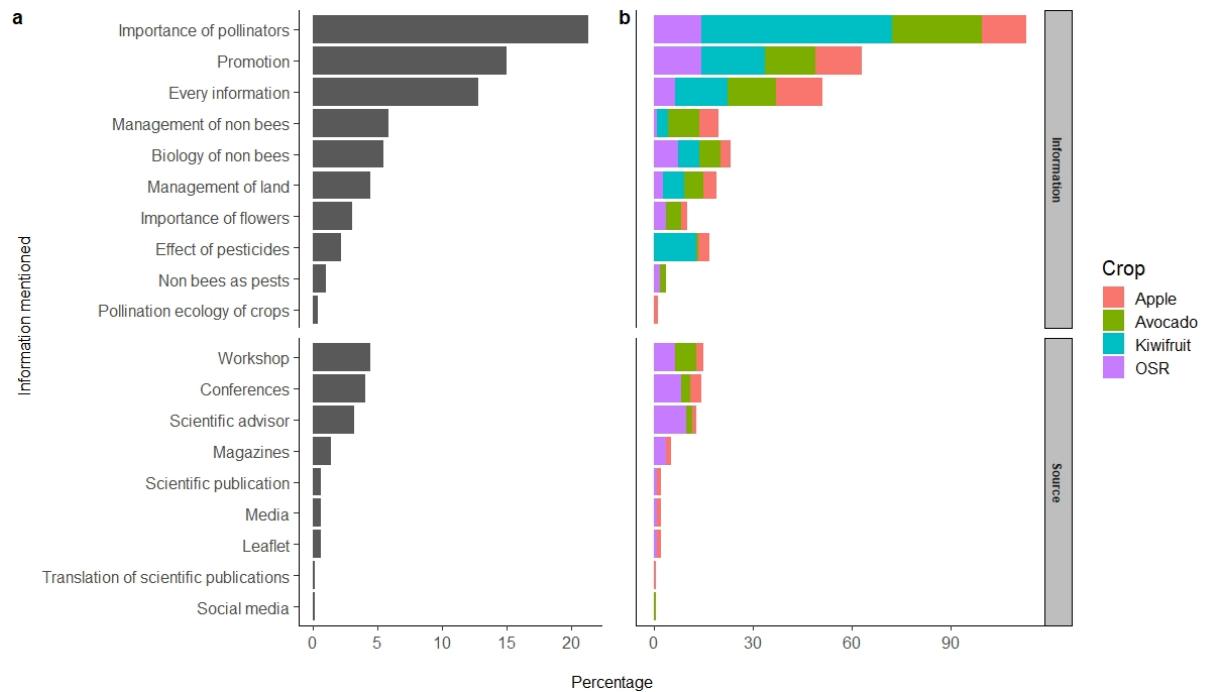
Oilseed rape (OSR) was grown on 34 million ha and 70.5 million tonnes were harvested globally in 2019 (FAOSTAT, 2021). This mass-flowering crop is self-compatible, can be wind-pollinated but also benefits from pollination by insects (Stanley et al., 2013). As it produces large quantities of nectar, OSR is very attractive to insect pollinators (Williams et al., 1986). It has been shown that both bees and flies are effective pollinators of OSR (Phillips et al., 2018).

**Table S1 | Study regions and data collection.** Number of questionnaires per country.

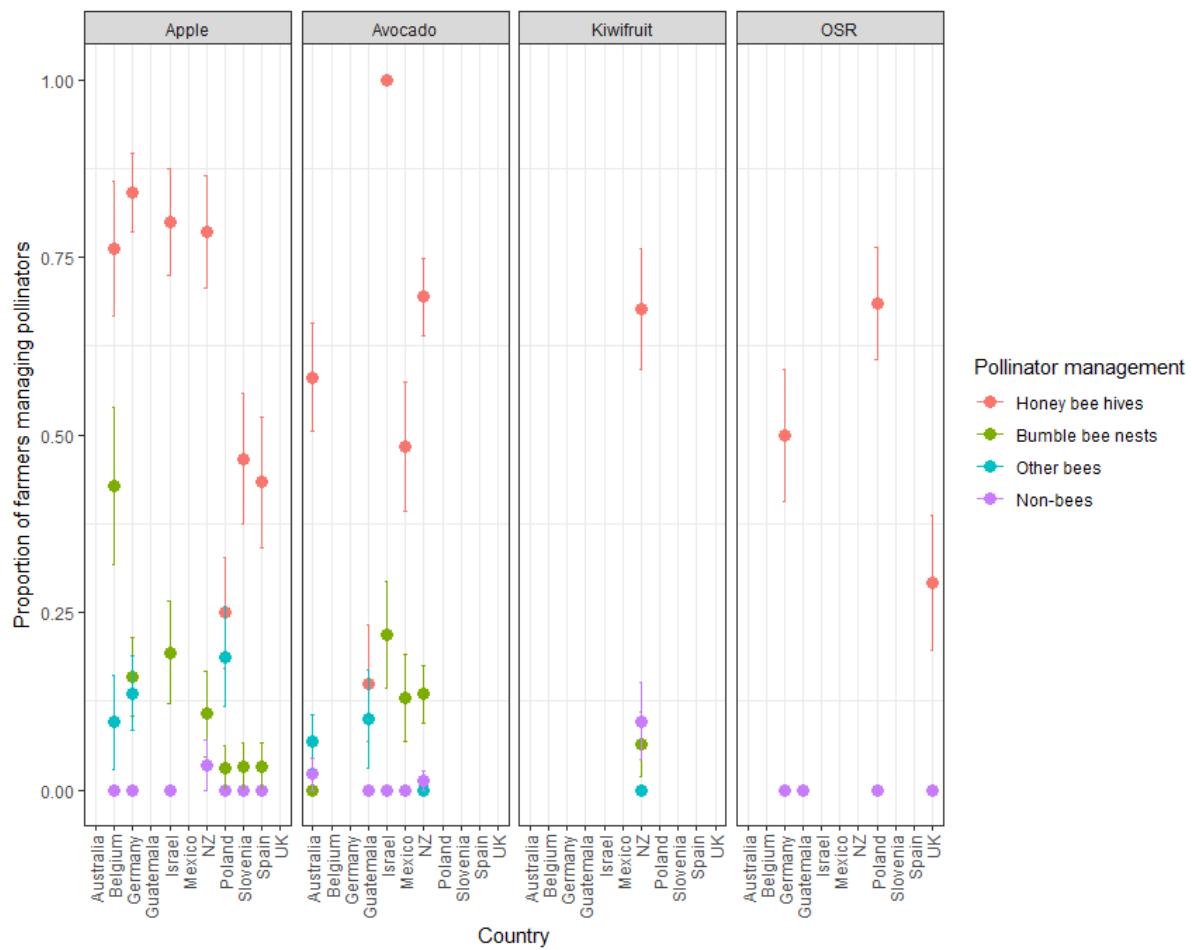
| Country                | Surveyor                                                 | Contact information                                               | Crop                          | Number of questionnaires |
|------------------------|----------------------------------------------------------|-------------------------------------------------------------------|-------------------------------|--------------------------|
| Australia              | Brad Howlett;<br>Megan Gee                               | brad.howlett@plantandfood.co.nz                                   | Avocado                       | 44                       |
| Belgium                | Maxime Eeraerts                                          | maxime.eeraerts@ugent.be                                          | Apple                         | 21                       |
| Germany                | Julia Osterman                                           | jul.osterman@gmail.com                                            | Apple<br>OSR                  | 44<br>30                 |
| Guatemala              | Patricia<br>Landaverde-<br>González                      | patylandavr@gmail.com                                             | Avocado<br>OSR                | 20<br>22                 |
| Israel                 | Omri Avrech; Yael<br>Mandelik                            | yael.mandelik@mail.huji.ac.il                                     | Apple<br>Avocado              | 31<br>32                 |
| New Zealand            | Brad Howlett;<br>Megan Gee                               | brad.howlett@plantandfood.co.nz                                   | Apple<br>Avocado<br>Kiwifruit | 28<br>74<br>31           |
| Mexico                 | Flor Itzel Trujillo-<br>Elisea                           | fitrujillo@ecosur.edu.mx                                          | Avocado                       | 31                       |
| Poland                 | Aleksandra<br>Langowska,<br>Zbigniew<br>Koltowski;       | aleksandra.langowska@up.poznan.pl<br>zbigniew.koltowski@inhort.pl | Apple<br>OSR                  | 32<br>35                 |
| Slovenia               | Danilo Bevk                                              | danilo.bevk@nib.si                                                | Apple                         | 30                       |
| Spain                  | Marcos Miñarro                                           | mminarro@serida.org                                               | Apple                         | 30                       |
| United<br>Kingdom (UK) | Lorna Cole;<br>Michael P. D.<br>Garratt; Brad<br>Howlett | lorna.Cole@sruc.ac.uk<br>m.p.garratt@reading.ac.uk                | OSR                           | 25                       |

**Table S2 |** Flower visitor abundances in percentage per crop and country

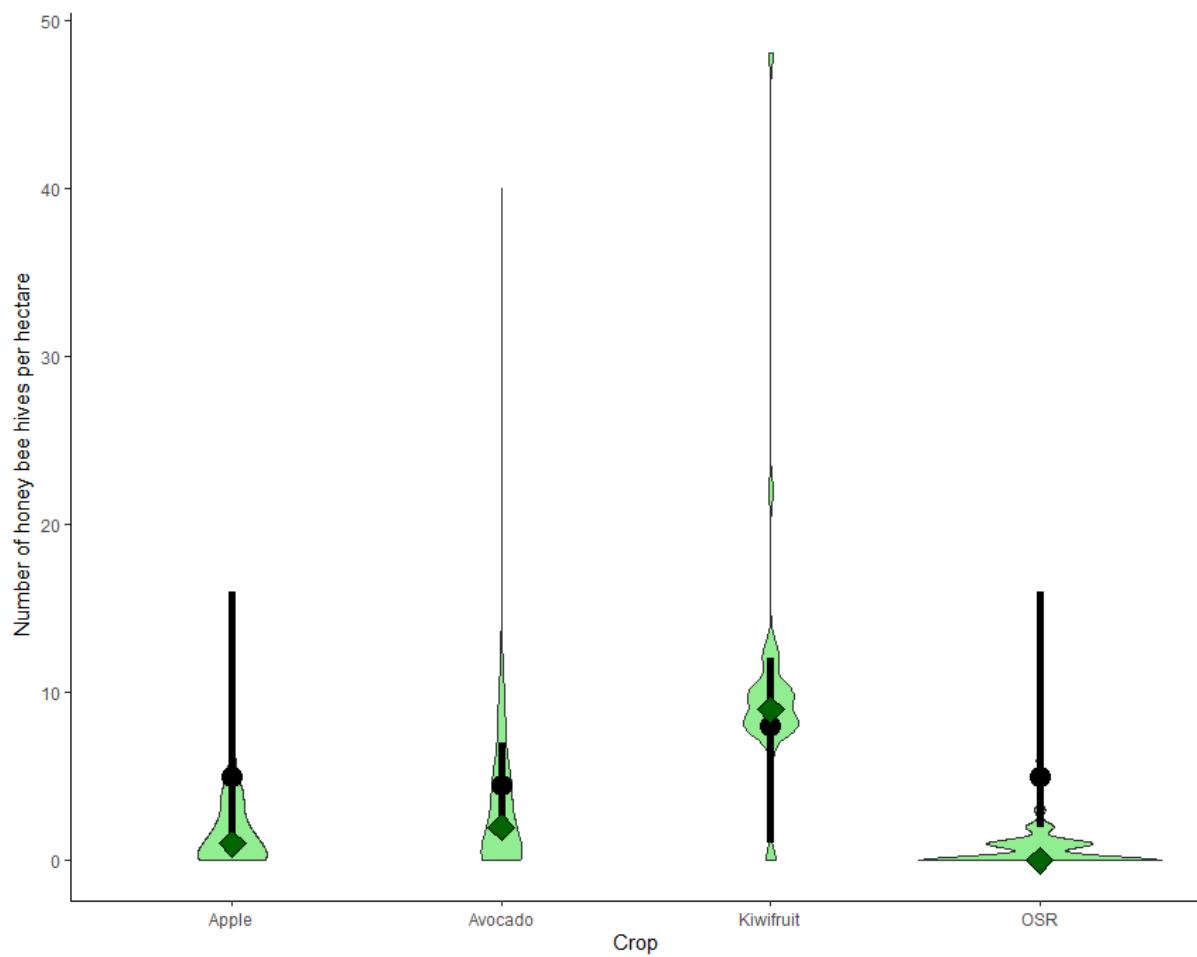
| Survey country farmers perception | Crop (common name) | Number | Data holder                     | Location of study on flower visitor abundance | Source                           |
|-----------------------------------|--------------------|--------|---------------------------------|-----------------------------------------------|----------------------------------|
| Australia                         | Avocado            | 1      | unknown                         | Australia                                     | (Vithanage, 1986)                |
|                                   |                    | 2      | brad.howlett@plantandfood.co.nz | Australia                                     | (Evans and Goodwin, 2011)        |
|                                   |                    | 3      | brad.howlett@plantandfood.co.nz | Australia                                     | (Willcox et al., 2019)           |
| Belgium                           | Apple              | 1      | muriel.quinet@uclouvain.be      | Belgium                                       | (Quinet et al., 2016)            |
| Germany                           | Apple              | 1      | jul.osterman@gmail.com          | Germany                                       | unpublished                      |
|                                   | Oilseed rape       | 1      | jul.osterman@gmail.com          | Germany                                       | unpublished                      |
| Guatemala                         | Avocado            | 1      | unknown                         | Mexico                                        | (Ish-Am et al., 1999)            |
|                                   |                    | 2      | Quezada-Euan: qeuan@uady.m      | Mexico                                        | (Perez-Balam et al., 2012)       |
|                                   |                    | 3      | qeuan@tunku.uady.mx             | Mexico                                        | (Can-Alonzo et al., 2005)        |
|                                   | Oilseed rape       | 1      | rihannon.fiction@gmail.com      | Mexico                                        | (Escobedo-Kenefic, 2020)         |
| Israel                            | Apple              | 1      | yael.mandelik@mail.huji.ac.il   | Israel                                        | unpublished                      |
| New Zealand                       | Apple              | 1      | unknown                         | New Zealand                                   | (Palmer-Jones and Clinch, 196    |
|                                   |                    | 1      | brad.howlett@plantandfood.co.nz | New Zealand                                   | (Read et al., 2017)              |
|                                   | Avocado            | 1      | brad.howlett@plantandfood.co.nz | New Zealand                                   | (Evans and Goodwin, 2011)        |
|                                   |                    | 2      | brad.howlett@plantandfood.co.nz | New Zealand                                   | (Howlett et al., 2017)           |
| Mexico                            | Avocado            | 1      | unknown                         | Mexico                                        | (Ish-Am et al., 1999)            |
|                                   | Kiwifruit          | 2      | Quezada-Euan: qeuan@uady.m      | Mexico                                        | (Perez-Balam et al., 2012)       |
|                                   |                    | 3      | qeuan@tunku.uady.mx             | Mexico                                        | (Can-Alonzo et al., 2005)        |
| Poland                            | Apple              | 1      | unknown                         | Poland                                        | (Jabłoński et al., 1981)         |
|                                   | Oilseed rape       | 2      | unknown                         | Poland                                        | (Wilkaniec, 1990)                |
|                                   |                    | 1      | jul.osterman@gmail.com          | Germany                                       | unpublished                      |
| Slovenia                          | Apple              | 1      | danilo.bevk@nib.si              | Slovenia                                      | (Bevk, D, Prešern, J., Pislak, M |
| Spain                             | Apple              | 1      | mminarro@serida.org             | Spain                                         | (Miñarro and García, 2018)       |
|                                   | Oilseed rape       | 2      | unknown                         | Spain                                         | (Vicens and Bosch, 2000)         |
| United Kingdom (UK)               |                    | 1      | m.p.garratt@reading.ac.uk       | UK                                            | (Dainese et al., 2019)           |


**Table S3** | Estimates and test statistics of the generalised linear models relating farmer knowledge of pollinator groups with their pollinator management practices.

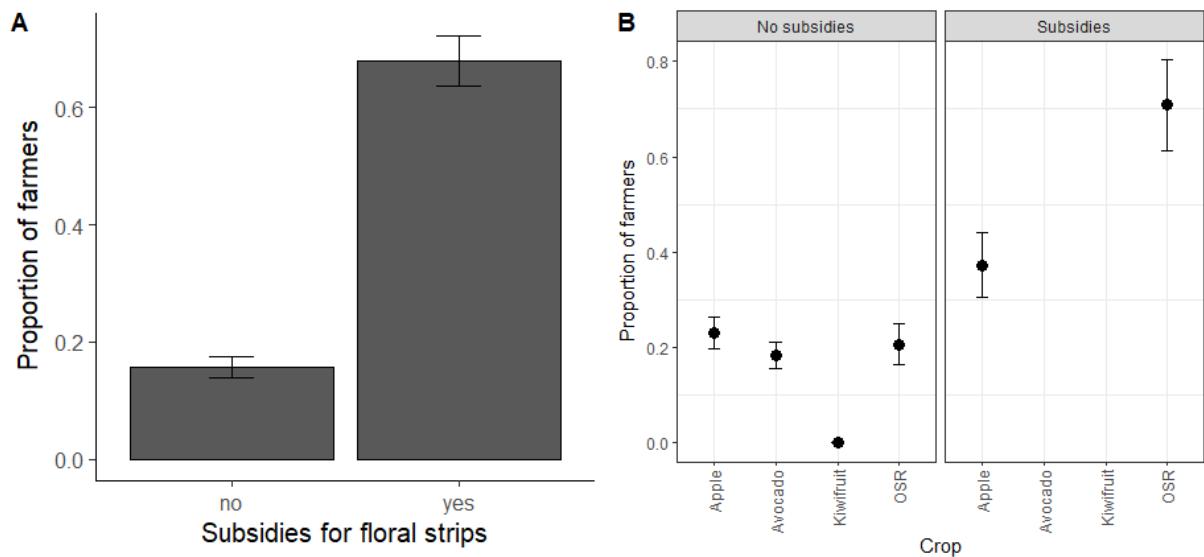
| Comparison                        | DF | $\chi^2$ | P                 |
|-----------------------------------|----|----------|-------------------|
| <b>Providing honey bee hives</b>  |    |          |                   |
| Honey bee score                   | 1  | 23.09    | <b>&lt; 0.001</b> |
| Bumble bee score                  | 1  | 1.57     | 0.211             |
| Other bee score                   | 1  | 0.75     | 0.386             |
| Median non-bee score              | 1  | 0.04     | 0.834             |
| Crop                              | 3  | 4.55     | 0.208             |
| Country                           | 10 | 89.00    | <b>&lt; 0.001</b> |
| Organic                           | 1  | 0.05     | 0.819             |
| <b>Providing bumble bee nests</b> |    |          |                   |
| Honey bee score                   | 1  | 0.25     | 0.799             |
| Bumble bee score                  | 1  | 11.48    | <b>&lt; 0.001</b> |
| Other bee score                   | 1  | 3.34     | 0.067             |
| Median non-bee score              | 1  | 1.78     | 0.183             |
| Crop                              | 3  | 16.54    | <b>&lt; 0.001</b> |
| Country                           | 10 | 38.48    | <b>&lt; 0.001</b> |
| Organic                           | 1  | 0.75     | 0.386             |
| <b>Providing other bees</b>       |    |          |                   |
| Honey bee score                   | 1  | 0.01     | 0.924             |
| Bumble bee score                  | 1  | 0.00     | 0.972             |
| Other bee score                   | 1  | 4.56     | <b>0.033</b>      |
| Median non-bee score              | 1  | 0.00     | 0.945             |
| Crop                              | 3  | 18.95    | <b>&lt; 0.001</b> |
| Country                           | 10 | 22.71    | <b>0.012</b>      |
| Organic                           | 1  | 0.00     | 0.963             |


**Table S4** | Estimates and test statistics of the generalised linear models relating farmer knowledge of pollinator groups with their on-farm pollinator friendly measures.

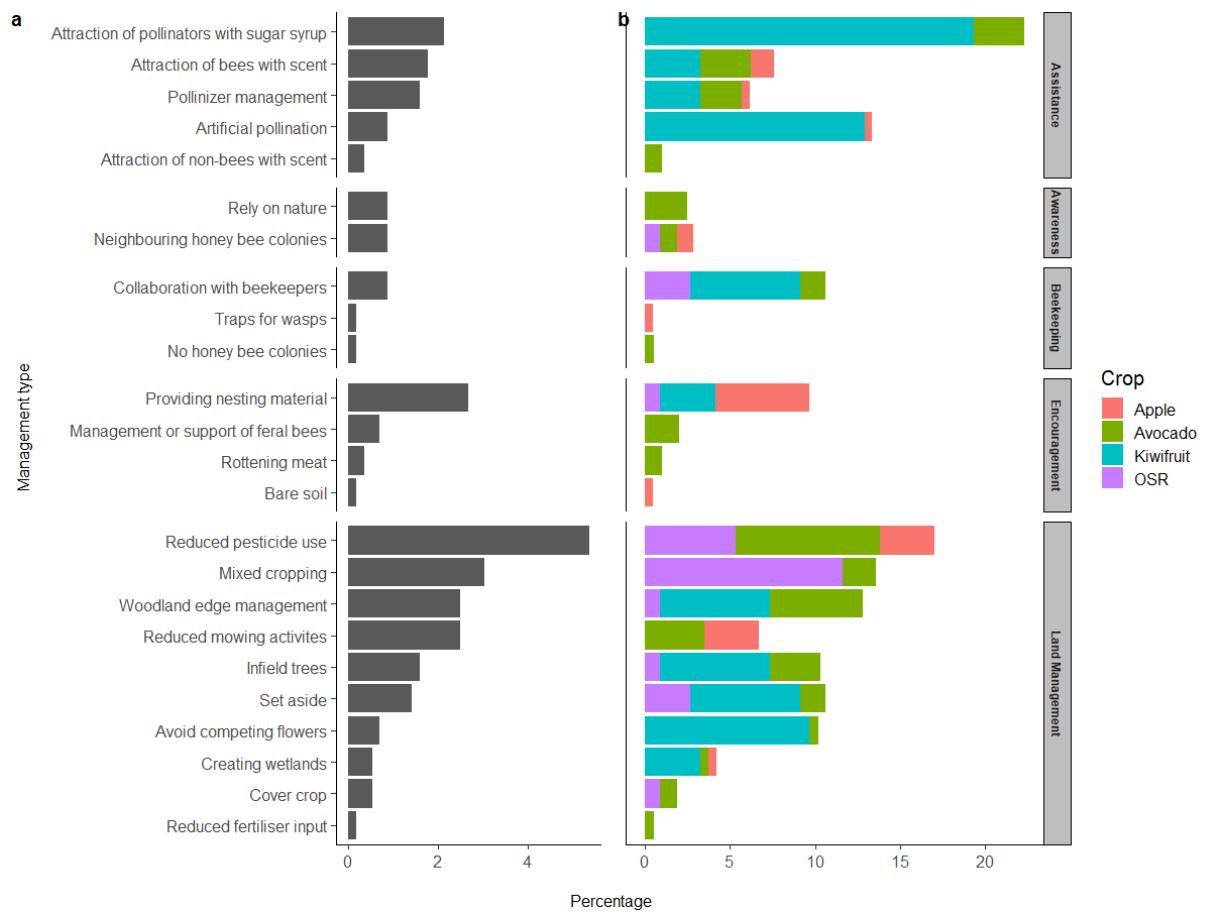
| Comparison                                  | DF | $\chi^2$ | P                 |
|---------------------------------------------|----|----------|-------------------|
| <b>Floral strips establishment</b>          |    |          |                   |
| Honey bee score                             | 1  | 0.622    | 0.430             |
| Bumble bee score                            | 1  | 0.086    | 0.769             |
| Other bee score                             | 1  | 0.425    | 0.514             |
| Median non-bee score                        | 1  | 13.994   | <b>&lt; 0.001</b> |
| Subsidies                                   | 1  | 83.378   | <b>&lt; 0.001</b> |
| Crop                                        | 3  | 2.434    | 0.487             |
| Organic                                     | 1  | 0.011    | 0.916             |
| <b>Hedgerow management</b>                  |    |          |                   |
| Honey bee score                             | 1  | 1.210    | 0.271             |
| Bumble bee score                            | 1  | 3.014    | 0.082             |
| Other bee score                             | 1  | 0.033    | 0.856             |
| Median non-bee score                        | 1  | 2.696    | 0.101             |
| Subsidies                                   | 1  | 10.294   | <b>0.001</b>      |
| Crop                                        | 3  | 10.665   | <b>0.014</b>      |
| Organic                                     | 1  | 1.327    | 0.249             |
| <b>Other pollinator friendly management</b> |    |          |                   |
| Honey bee score                             | 1  | 0.011    | 0.917             |
| Bumble bee score                            | 1  | 0.094    | 0.367             |
| Other bee score                             | 1  | 0.814    | 0.367             |
| Median non-bee score                        | 1  | 1.270    | 0.260             |
| Country                                     | 10 | 52.086   | <b>&lt; 0.001</b> |
| Crop                                        | 3  | 0.702    | 0.873             |
| Organic                                     | 1  | 1.717    | 0.190             |


## Supplementary Figures

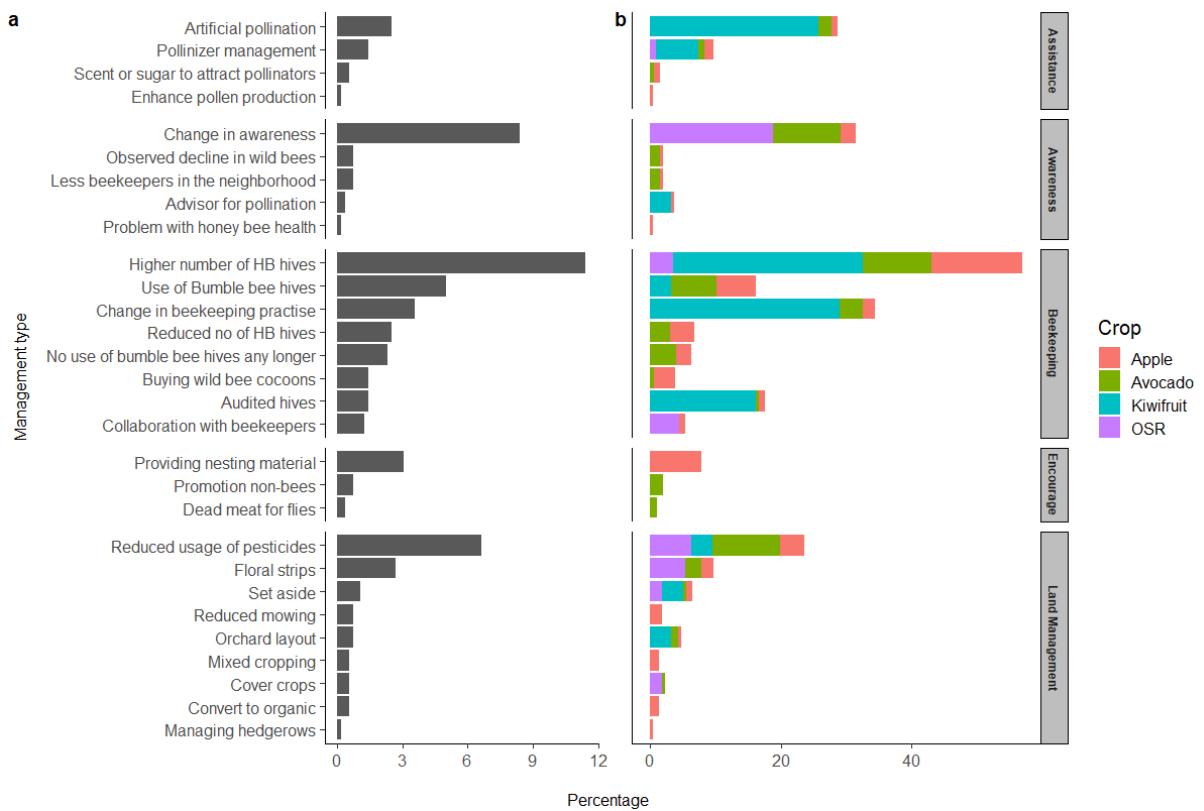



**Fig. S1. Stated information and source of information wanted by farmers in regards to non-bees in overall percentage (a) and percentage per crop (b).**




**Fig. S2. Mean proportion of farmers managing pollinators per crop, country and management type.** Error bars indicate  $\pm 1$  SE.




**Fig. S3. Data distribution of number of honey bee hives per hectare according to crops** (in light green, violin plot). Dark green diamonds represent the median hive number per hectare per crop. Black dots represent the mean number of hives and the black line the range of hives per hectare recommended by studies (reviewed in Rollin and Garibaldi, 2019).



**Fig. S4. Mean proportion of farmers implementing (A) floral strips with and without subsidies and (B) hedgerows depending on subsidies and crop type.** Error bars indicate  $\pm 1$  SE.



**Fig. S5. Stated management types implemented to enhance biodiversity and pollination delivery by farmers (apart from floral strips and hedgerow management) in overall percentage (a) and percentage per crop (b).**



**Fig. S6 | Stated changes in pollination management in the last 10 years by farmers in overall percentage (a) and percentage per crop (b).**

## Supplementary Literature

Bevk, D, Prešern, J., Pislak, M., Colarič, M., Gregori, M., Vrezec, A., 2018. Zaključno poročilo o rezultatih opravljenega raziskovalnega dela na projektu: Pomen divjih opraševalcev pri opraševanju kmetijskih rastlin in trajnostno upravljanje v kmetijstvu za zagotovitev zanesljivega opraševanja.

Can-Alonzo, C., Quezada-Euán, J.J.G., Xiu-Ancona, P., Moo-Valle, H., Valdovinos-Nunez, G.R., Medina-Peralta, S., 2005. Pollination of “criollo” avocados (*Persea americana*) and the behaviour of associated bees in subtropical Mexico. J. Apic. Res. 44, 3–8.  
<https://doi.org/10.1080/00218839.2005.11101138>

Craig, J.L., Stewart, A.M., Pomeroy, N., Heath, A.C.G., Goodwin, R.M., 1988. A review of kiwifruit pollination: Where to next? NZ J. Exp. Agri. 16, 385–399.

Dainese, M., Martin, E.A., Aizen, M.A., Albrecht, M., Bartomeus, I., Bommarco, R., Carvalheiro, L.G., Chaplin-kramer, R., Gagic, V., Garibaldi, L.A., Ghazoul, J., Grab, H., Jonsson, M., Karp, D.S., Letourneau, D.K., Marini, L., Poveda, K., Rader, R., Smith, H.G., Takada, M.B., Taki, H., Tamburini, G., Tschumi, M., Viana, B.F., Westphal, C., Willcox, B., Wratten, S.D., Yoshioka, A., Zaragoza-Trello, C., Zhang, W., Zou, Y., Steffan-Dewenter, I., 2019. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121.

Davenport, T.L., 2019. Cross- vs. self-pollination in ‘Hass’ avocados growing in coastal and inland orchards of Southern California. Sci. Hortic. 246, 307–316.

Delaplane, K.S., Mayer, D.F., 2000. Crop Pollination by Bees. CABI Publishing, New York, USA.

Escobedo-Kenefic, N., 2020. Efecto de la fragmentación del paisaje en la polinización y éxito reproductivo de *Brassica rapa* L. Universidad Nacional Autónoma de México -UNAM-.

Evans, L.J., Goodwin, R.M., 2011. The role of insect pollinators in avocado (*Persea americana*) pollination in New Zealand and Australia. Proc. VII World Avocado Congr. 2011 (Actas VII Congr. Mund. del Aguacate 2011) 2011.

FAOSTAT, 2021. Crops [WWW Document]. URL <http://www.fao.org/faostat/en/#data/QC> (accessed 11.05.21)

Free, J.B., 1993. Insect Pollination of Crops. Academic Press, London, UK.

Garrat, M.P.D., Breeze, T.D., Boreux, V., Fountain, M.T., McKerchar, M., Webber, M., Coston, D.J., Jenner, N., Dean, R., Westbury, D.B., Biesmeijer, J.C., Potts, S.G., 2016. Apple pollination: Demand depends on variety and supply depends on pollinator identity. PLOSone 11, e0153889.

Howlett, B.G., Read, S.F.J., Jesson, L.K., Benoist, A., Evans, L.E., Pattemore, D.E., 2017. Diurnal insect visitation patterns to “Hayward” kiwifruit flowers in New Zealand. New Zeal. Plant Prot. 70, 52–57. <https://doi.org/10.30843/nzpp.2017.70.27>

Ish-Am, G., Barrientos-Priego, A.F. Castañeda-Vildózola, A., Gazit, S., 1999. Avocado (*Persea americana* Mill.) pollinators in its region of origin, in: Revista Chapingo Serie Horticultura 5 Num. Especial. Proc. of Fourth World Avocado Congress. pp. 137–143.

Ish-Am, G., Lahav, E., 2011. Evidence for a major role of honey bees (*Apis mellifera*) rather than wind during avocado (*Persea americana* Mill.) pollination. *J. Hort. Sci. Biotech.* 86, 589–594.

Jabłoński, B., Skowronek, J., Marcinkowski, J., 1981. Owocowanie jabłoni (James Grieve i Golden Delicious) po zapylaniu ich własnym pyłkiem przez pszczoły. [Cropping of apple trees (James Grieve and Golden Delicious cvs) pollinated with their own pollen by bees.]. *Pszczylnicze Zeszyty Naukowe* 25, 129–139.

Klein, A.-M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T., 2007. Importance of pollinators in changing landscapes for world crops. *Proc. R. Soc. B* 274, 303–313.

Miñarro, M., García, D., 2018. Complementarity and redundancy in the functional niche of cider apple pollinators. *Apidologie* 49, 789–802. <https://doi.org/10.1007/s13592-018-0600-4>

Palmer-Jones, T., Clinch, P.G., 1966. Observations on the pollination of apple trees (*Malus sylvestris* Mill.). *New Zeal. J. Agric. Res.* 9, 191–196. <https://doi.org/10.1080/00288233.1966.10420773>

Pérez-Balam, J., Quezada-Euán, J.J., Alfaro-Bates, R., Medina, S., McKendrick, L., Soro, A., Paxton, R.J., 2012. The contribution of honey bees, flies and wasps to avocado (*Persea americana*) pollination in southern Mexico. *J. Pollinat. Ecol.* 8. [https://doi.org/10.26786/1920-7603\(2012\)6](https://doi.org/10.26786/1920-7603(2012)6)

Phillips, B.B., Willians, A., Osborne, J.L., Shaw, R.F., 2018. Shared traits make flies and bees effective pollinators of oilseed rape (*Brassica napus* L.). *B. Appl. Ecol.* 32, 66–76.

Quinet, M., Warzée, M., Vanderplanck, M., Michez, D., Lognay, G., Jacquemart, A.L., 2016. Do floral resources influence pollination rates and subsequent fruit set in pear (*Pyrus communis* L.) and apple (*Malus x domestica* Borkh) cultivars? *Eur. J. Agron.* 77, 59–69. <https://doi.org/10.1016/j.eja.2016.04.001>

Read, S.F.J., Howlett, B.G., Jesson, L.K., Pattemore, D.E., 2017. Insect visitors to avocado flowers in the Bay of Plenty, New Zealand. *New Zeal. Plant Prot.* 70, 38–44. <https://doi.org/10.30843/nzpp.2017.70.25>

Rollin, O., Garibaldi, L.A., 2019. Impacts of honeybee density on crop yield: A meta-analysis. *J. Appl. Ecol.* 56, 1152–1163. <https://doi.org/10.1111/1365-2664.13355>

Saez, A., Negri, P., Viel, M., Aizen, M., 2019. Pollination of artificial and bee pollination practices in kiwifruit. *Sci. Horti.* 246, 1017–1021.

Stanley, D. A., Stout, J. C., 2013. Quantifying the impacts of bioenergy crops on pollinating insect abundance and diversity: a field-scale evaluation reveals taxon-specific responses. *J. Appl. Ecol.* 50, 335–344.

Vicens, N., Bosch, J., 2000. Weather-dependent pollinator activity in an apple orchard, with special reference to *Osmia cornuta* and *Apis mellifera* (Hymenoptera: Megachilidae and Apidae). *Environ. Entomol.* 29, 413–420. <https://doi.org/10.1603/0046-225X-29.3.413>

Vithanage, H.I.M.V., 1986. Insect pollination of avocado and macadamia. *Acta Hortic.* 175, 97–101.

Wilkaniec, Z., 1990. Intensywność i efektywność oblotu jabłoni przez owady zapylające w zależności od formy korony i odmiany [Intensity and effectiveness of flights on apple

trees by pollinating insects depending on form of tree crown]. Roczniki Akademii Rolniczej w Poznaniu. Rozprawy Naukowe.

Willcox, B.K., Howlett, B.G., Robson, A.J., Cutting, B., Evans, L., Jesson, L., Kirkland, L., Jean-Meyzonnier, M., Potdevin, V., Saunders, M.E., Rader, R., 2019. Evaluating the taxa that provide shared pollination services across multiple crops and regions. Sci. Rep. 9, 1–10. <https://doi.org/10.1038/s41598-019-49535-w>

Williams, I.H., Martin, A.P., White, R.P., 1986. The pollination requirements of oil-seed rape (*Brassica napus* L.). J. Agri. Sci. 106, 27-30.

## Grower Survey

Number      Farm Crop Area (ha)

- 1) How many crops do you grow?
- 2) What crops do you grow that require insect pollination?

---

Please complete this for \_\_\_\_\_ crop

Please specify

- 3) Are you certified Organic? Yes/No Please circle one
- 4) What is the overall area (ha) of your insect pollinated crop? \_\_\_\_\_
- 5) How important are these pollinators for your crop? (score 0: if not at all, 1: if minor pollinators, 2: if somewhat important and 3: if very important)

### Bees

|            |   |   |   |   |
|------------|---|---|---|---|
| Honeybees  | 0 | 1 | 2 | 3 |
| Bumblebees | 0 | 1 | 2 | 3 |
| Other bees | 0 | 1 | 2 | 3 |

### Non-bees

|                        |   |   |   |   |
|------------------------|---|---|---|---|
| Flies                  | 0 | 1 | 2 | 3 |
| Beetles                | 0 | 1 | 2 | 3 |
| Moths/Butterflies      | 0 | 1 | 2 | 3 |
| Others? Please specify | 0 | 1 | 2 | 3 |

If you believe non-bees can pollinate your crop, please complete Q. 6-8      Otherwise please go to Q.9

- 6) Why are non-bee pollinators useful for your crop? Please tick
  - they are more reliable pollinators than bees
  - they visit my crop when bees aren't active
  - they provide additional pollination above what bees can do

Other (please specify) \_\_\_\_\_

7) What % do you think non-bees contribute to your crop yield? \_\_\_\_\_

8) How did you become aware that non-bees can contribute pollination to your crop? Please tick

I have seen them

Other growers

Farm advisor or agronomist

Grower workshops

Through grower resources (magazine, pamphlet)

Other media (e.g. radio, tv, internet)

Scientists (publications, discussions)

Other (please specify)

9) How do you manage or try to promote pollinators in your crop? Please tick

Provide floral strips for bees  non-bees

Manage hedgerows for bees  non-bees

Supply honeybees  bumblebees  other bees  non-bees

Other practices? Please specify \_\_\_\_\_

10) How many honeybees hives do you provide per /ha? \_\_\_\_\_ bumblebees /ha? \_\_\_\_\_ others (please specify) /ha? \_\_\_\_\_

11) Has your approach to pollination management changed in the last ten years? How?

---

---

12) Do you believe non-bee pollinators can play a more important role in your crop pollination in the future? Yes/No Please circle and explain why below:

---

—

---

13) What further information would you like to help you utilise non-bees better?i

---

---

## About this survey

This study was initiated under the COST Super B programme, <http://www.superb-project.eu/> and involves the collaboration of scientists from universities and research organisations across numerous countries including from Europe, Oceania and Africa.

The aim of this survey is to improve understanding of current crop grower knowledge regarding the diversity and value of pollinators within their crops. Growers will be surveyed across a number of countries to determine comparative knowledge and whether future strategies to improve pollination can be applied at a global scale. It will therefore provide information that can assist with future research priorities and determine whether scientific knowledge is being transferred adequately to growers.

We aim to publish the data alongside scientific knowledge and recommend strategies to improve the transfer of knowledge between growers and scientists. We will also aim to provide a summary of our findings to participating growers, should they request it (this data should be available by January 2019). By filling in the survey, participants consent to the collection and the usage of their data for the above described scientific purpose. Information gathered will be kept strictly confidential and any resulting publications will ensure participants can not be identified. Please contact us if you wish to withdraw your answers at any stage following survey completion. For this purpose you may wish to mark your survey with a code that you can easily refer to.

For further information about this survey and research please email either:

Brad Howlett (Pollination Scientist)

The New Zealand Institute for Plant & Food Research Limited, Gerald Street, Lincoln, New Zealand

Brad.Howlett@plantandfoodresearch.co.nz

Michael Garratt (Senior Research Fellow)

Centre for Agri-Environmental Research, School of Agriculture, Policy and Development University of Reading, United Kingdom

m.p.garratt@reading.ac.uk